A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
02 2019
Historique:
received: 05 07 2017
accepted: 03 11 2017
revised: 30 10 2017
pubmed: 13 1 2018
medline: 7 1 2020
entrez: 13 1 2018
Statut: ppublish

Résumé

Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (r

Identifiants

pubmed: 29326435
doi: 10.1038/s41380-017-0001-5
pii: 10.1038/s41380-017-0001-5
pmc: PMC6344370
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

169-181

Subventions

Organisme : Medical Research Council
ID : MC_PC_17228
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U147585819
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12011/2
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/S015132/1
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Biotechnology and Biological Sciences Research Council
ID : BB/F019394/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_QA137853
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K026992/1
Pays : United Kingdom

Références

Spearman C. “General Intelligence,” Objectively Determined and Measured. Am J Psychol. 1904;15:201–92.
doi: 10.2307/1412107
Carroll JB. Human cognitive abilities: A survey of factor-analytic studies.. New York, NY: Cambridge University Press; 1993.
doi: 10.1017/CBO9780511571312
Deary IJ, Weiss A, Batty GD. Intelligence and personality as predictors of illness and death how researchers in differential psychology and chronic disease epidemiology are collaborating to understand and address health inequalities. Psychol Sci Publ Int. 2010;11:26.
Calvin CM, Batty GD, Der G, Brett CE, Taylor A, Pattie A, et al. Childhood intelligence in relation to major causes of death in 68 year follow-up: prospective population study. BMJ. 2017;357:j2708.
doi: 10.1136/bmj.j2708
Calvin CM, Deary IJ, Fenton C, Roberts BA, Der G, Leckenby N, et al. Intelligence in youth and all-cause-mortality: systematic review with meta-analysis. Int J Epidemiol. 2011;40:626–44.
doi: 10.1093/ije/dyq190
Posthuma D, De Geus EJC, Boomsma DI. Perceptual speed and IQ are associated through common genetic factors. Behav Genet. 2001;31:593–602.
doi: 10.1023/A:1013349512683
Deary IJ. Intelligence. Annu Rev Psychol. 2012;63:453–82.
doi: 10.1146/annurev-psych-120710-100353
Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:4.
doi: 10.1038/ng.608
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Human Genet. 2011;88:7.
doi: 10.1016/j.ajhg.2010.11.011
Marioni RE, Davies G, Hayward C, Liewald D, Kerr SM, Campbell A, et al. Molecular genetic contributions to socioeconomic status and intelligence. Intelligence. 2014;44:26–32.
doi: 10.1016/j.intell.2014.02.006
Hill WD, Davies G. The CHARGE Cognitive Working Group, Liewald DC, McIntosh AM, Deary IJ. Age-dependent pleiotropy between general cognitive function and major psychiatric disorders. Biol Psychiatry. 2015;80:266–73.
doi: 10.1016/j.biopsych.2015.08.033
Bulik-Sullivan BK, Loh P-R, Finucane HK, Ripke S, Yang J, Patterson N, et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47:291–5.
doi: 10.1038/ng.3211
Xia C, Amador C, Huffman J, Trochet H, Campbell A, Porteous D, et al. Pedigree-and SNP-associated genetics and recent environment are the major contributors to anthropometric and cardiometabolic trait variation. PLoS Genet. 2016;12:e1005804.
doi: 10.1371/journal.pgen.1005804
Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015;47:1114–20.
doi: 10.1038/ng.3390
Hill WD, Arslan RC, Xia C, Luciano M, Amador C, Navarro P et al. Genomic analysis of family data reveals additional genetic effects on intelligence and personality. bioRxiv. 2017.
Sniekers S, Stringer S, Watanabe K, Jansen PR, Coleman JR, Krapohl E, et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet. 2017;49:1107–12.
doi: 10.1038/ng.3869
Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.
doi: 10.1038/ng.3097
Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7.
doi: 10.1038/nature13595
Davies G, Tenesa A, Payton A, Yang J, Harris SE, Liewald D, et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry. 2011;16:996–1005.
doi: 10.1038/mp.2011.85
Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ, et al. Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry. 2014;19:253–8.
doi: 10.1038/mp.2012.184
Davies G, Armstrong N, Bis JC, Bressler J, Chouraki V, Giddaluru S, et al. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53,949). Mol Psychiatry. 2015;20:183–92.
doi: 10.1038/mp.2014.188
Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, et al. Genome-wide association study of cognitive functions and educational attainment in UK Biobank (N=112,151). Mol Psychiatry. 2016;21:758–67.
doi: 10.1038/mp.2016.45
Hill WD, Davies G, Harris SE, Hagenaars SP, Liewald D, Penke L et al. Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions. Transl Psychiatry. 2016; 6.
Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B, et al. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci. 2014;111:13790–4.
doi: 10.1073/pnas.1404623111
Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533:539–42.
doi: 10.1038/nature17671
Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA et al. MTAG: Multi-Trait Analysis of GWAS. bioRxiv. 2017; 118810.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:4.
doi: 10.1038/75556
Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2015;44:D481–D487.
doi: 10.1093/nar/gkv1351
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.
doi: 10.1073/pnas.0506580102
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K et al. Genome-wide genetic data on ~500,000 UK Biobank participants. bioRxiv. 2017.
Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Mägi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192.
doi: 10.1038/nprot.2014.071
Haplotype Reference C. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.
doi: 10.1038/ng.3643
Genomes Project C. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65.
doi: 10.1038/nature11632
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.
doi: 10.1093/bioinformatics/btq559
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:190–1.
doi: 10.1093/bioinformatics/btq340
Watanabe K, Taskesen E, van Bochoven A, Posthuma D FUMA: Functional mapping and annotation of genetic associations. bioRxiv 2017;8:1-11.
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164–e164.
doi: 10.1093/nar/gkq603
Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.
doi: 10.1038/ng.2892
Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790–7.
doi: 10.1101/gr.137323.112
Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9:215–6.
doi: 10.1038/nmeth.1906
Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–30.
doi: 10.1038/nature14248
Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.
doi: 10.1038/ng.3538
de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWASData. PLoS Comp Biol. 2015;11:e1004219.
doi: 10.1371/journal.pcbi.1004219
1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2012;467:1061–73.
doi: 10.1038/nature09534
The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–60.
doi: 10.1126/science.1262110
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228–35.
doi: 10.1038/ng.3404
Euesden J, Lewis CM, O’Reilly PF. PRSice: polygenic risk score software. Bioinformatics. 2014;31:1466–8.
doi: 10.1093/bioinformatics/btu848
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
doi: 10.1086/519795
Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Nick Patterson, Mark J Daly, Alkes L Price, Benjamin M Neale, LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nature Genetics. 2015;47:291–5.
doi: 10.1038/ng.3211
Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, et al. A versatile gene-based test for genome-wide association studies. Am J Hum Genet. 2010;87:139–45.
doi: 10.1016/j.ajhg.2010.06.009
Hill WD, Davies G, van de Lagemaat LN, Christoforou A, Marioni RE, Fernandes CPD, et al. Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Transl Psychiatry. 2014;4:e341.
doi: 10.1038/tp.2013.114
Hagenaars SP, Harris SE, Davies G, Hill WD, Liewald DC, Ritchie SJ, et al. Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112,151) and 24 GWAS consortia. Mol Psychiatry. 2016;21:1624–32. https://doi.org/10.1038/mp.2015.225 .
doi: 10.1038/mp.2015.225 pubmed: 26809841 pmcid: 5078856
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.
doi: 10.1016/j.cell.2014.01.044
Clelland C, Choi M, Romberg C, Clemenson G, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.
doi: 10.1126/science.1173215
Sahay A, Scobie KN, Hill AS, O’carroll CM, Kheirbek MA, Burghardt NS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature. 2011;472:466–70.
doi: 10.1038/nature09817
Dupret D, Revest J-M, Koehl M, Ichas F, De Giorgi F, Costet P, et al. Spatial relational memory requires hippocampal adult neurogenesis. PloS ONE. 2008;3:e1959.
doi: 10.1371/journal.pone.0001959
Garthe A, Behr J, Kempermann G. Adultgenerated hippocampal neurons allow the flexible use of spatially precise learning stra-tegies. PloS ONE.2009;4:e5464.
doi: 10.1371/journal.pone.0005464
Swan AA, Clutton JE, Chary PK, Cook SG, Liu GG, Drew MR. Characterization of the role of adult neurogenesis in touch‐screen discrimination learning. Hippocampus. 2014;24:1581–91.
doi: 10.1002/hipo.22337
Burghardt NS, Park EH, Hen R, Fenton AA. Adult‐born hippocampal neurons promote cognitive flexibility in mice. Hippocampus. 2012;22:1795–808.
doi: 10.1002/hipo.22013
Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31:361–70.
doi: 10.1016/j.tins.2008.04.001
Penke L, Maniega SM, Bastin ME, Valdes Hernandez MC, Murray C, Royle NA, et al. Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry. 2012;17:1026–30.
doi: 10.1038/mp.2012.66

Auteurs

W D Hill (WD)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK. david.hill@ed.ac.uk.
Department of Psychology, University of Edinburgh, Edinburgh, UK. david.hill@ed.ac.uk.

R E Marioni (RE)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
Department of Psychology, University of Edinburgh, Edinburgh, UK.
Queensland Brain Institute, The University of Queensland, Brisbane, 4072, QLD, Australia.

O Maghzian (O)

Department of Economics, Harvard University, Littauer Center, 1805 Cambridge Street Cambridge, Cambridge, MA, 02138, USA.

S J Ritchie (SJ)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
Department of Psychology, University of Edinburgh, Edinburgh, UK.

S P Hagenaars (SP)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, Camberwell,, London, SE5 8AF, UK.

A M McIntosh (AM)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
Division of Psychiatry, University of Edinburgh, Edinburgh, EH8 9YL, UK.

C R Gale (CR)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
Department of Psychology, University of Edinburgh, Edinburgh, UK.
MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.

G Davies (G)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
Department of Psychology, University of Edinburgh, Edinburgh, UK.

I J Deary (IJ)

Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
Department of Psychology, University of Edinburgh, Edinburgh, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH