Evolution of ventricular hypertrophy and myocardial mechanics in physiological and pathological hypertrophy.
basal septal hypertrophy
early imaging biomarker
left ventricular remodeling
microimaging
pathological stress
physiological stress
Journal
Journal of applied physiology (Bethesda, Md. : 1985)
ISSN: 1522-1601
Titre abrégé: J Appl Physiol (1985)
Pays: United States
ID NLM: 8502536
Informations de publication
Date de publication:
01 02 2019
01 02 2019
Historique:
pubmed:
24
1
2018
medline:
28
4
2020
entrez:
24
1
2018
Statut:
ppublish
Résumé
Left ventricular hypertrophy (LVH) is an adaptive response to physiological or pathological stimuli, and distinguishing between the two has obvious clinical implications. However, asymmetric septal hypertrophy and preserved cardiac function are noted in early stages in both cases. We characterized the early anatomic and functional changes in a mouse model of physiological and pathological stress using serial echocardiography-based morphometry and tissue velocity imaging. Weight-matched CF-1 male mice were separated into Controls ( n = 10), treadmill Exercise 1 h daily for 5 days/wk ( n = 7), and transverse aortic constriction (TAC, n = 7). Hypertrophy was noted first in the left ventricle basal septum compared with other segments in Exercise (0.84 ± 0.02 vs. 0.79 ± 0.03 mm, P = 0.03) and TAC (0.86 ± 0.05 vs. 0.77 ± 0.04 mm, P = 0.02) at 4 and 3 wk, respectively. At 8 wk, eccentric LVH was noted in Exercise and concentric LVH in TAC. Septal E/E' ratio increased in TAC (32.6 ± 3.7 vs. 37 ± 6.2, P = 0.002) compared with the Controls and Exercise (32.3 ± 5.2 vs. 32.8 ± 3.8 and 31.2 ± 4.9 vs. 28.2 ± 5.0, respectively, nonsignificant for both). Septal s' decreased in TAC (21 ± 3.6 vs. 17 ± 4.2 mm/s, P = 0.04) but increased in Exercise (19.6 ± 4.1 vs. 29.2 ± 2.3 mm/s, P = 0.001) and was unchanged in Controls (20.1 ± 4.2 vs. 20.9 ± 5.1 mm/s, nonsignificant). With similar asymmetric septal hypertrophy and normal global function during the first 4-8 wk of pathological and physiological stress, there is an early marginal increase with subsequent decrease in systolic tissue velocity in pathological but early and progressive increase in physiological hypertrophy. Tissue velocities may help adjudicate between these two states when there are no overt anatomic or functional differences. NEW & NOTEWORTHY Pathological and physiological stress-induced ventricular hypertrophy have different clinical connotations but present with asymmetric septal hypertrophy and normal global function in their early stages. We observed a marginal but statistically significant decrease in systolic tissue velocity in pathological but progressive increase in velocity in physiological hypertrophy. Tissue velocity imaging could be an important tool in the management of asymmetric septal hypertrophy by adjudicating between these two etiologies when there are no overt anatomic or functional differences.
Identifiants
pubmed: 29357486
doi: 10.1152/japplphysiol.00199.2016
pmc: PMC6397414
doi:
Types de publication
Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
354-362Références
Circulation. 2003 Aug 5;108(5):560-5
pubmed: 12847071
Am J Physiol Heart Circ Physiol. 2015 Aug 15;309(4):H543-52
pubmed: 26071549
Am J Physiol Heart Circ Physiol. 2001 Jan;280(1):H151-9
pubmed: 11123229
J Vasc Surg. 2006 Aug;44(2):372-6
pubmed: 16890871
Eur J Echocardiogr. 2006 Mar;7(2):79-108
pubmed: 16458610
J Am Soc Echocardiogr. 2002 Feb;15(2):167-84
pubmed: 11836492
J Am Coll Cardiol. 2011 Oct 18;58(17):1733-40
pubmed: 21996383
Hypertens Res. 2015 Sep;38(9):597-604
pubmed: 25832922
Am J Cardiol. 2000 Apr 15;85(8):1035-8
pubmed: 10760354
J Vis Exp. 2010 Apr 21;(38):
pubmed: 20410870
Eur J Echocardiogr. 2008 Jul;9(4):501-8
pubmed: 17905662
Int J Cardiol Heart Vasc. 2015 Apr 08;7:141-145
pubmed: 28785662
Circulation. 1976 Feb;53(2):286-91
pubmed: 128424
Heart Vessels. 2003 Mar;18(1):32-9
pubmed: 12644879
J Am Soc Echocardiogr. 2003 Nov;16(11):1144-9
pubmed: 14608285
Am Heart J. 1988 Feb;115(2):385-90
pubmed: 3341173
Circulation. 2002 Apr 2;105(13):1602-8
pubmed: 11927530
Circulation. 1994 May;89(5):2219-31
pubmed: 8181148
Circ Heart Fail. 2009 Mar;2(2):138-44
pubmed: 19808329
Am J Cardiol. 2006 Mar 15;97(6):866-71
pubmed: 16516591
Am J Physiol. 1997 Sep;273(3 Pt 2):H1595-605
pubmed: 9321854
Heart. 2002 Apr;87(4):336-9
pubmed: 11907005
Circ Cardiovasc Imaging. 2013 Mar 1;6(2):262-7
pubmed: 23307776
J Am Soc Echocardiogr. 2001 May;14(5):370-7
pubmed: 11337682
J Cardiovasc Pharmacol. 2013 Jul;62(1):50-7
pubmed: 23846802
Circ Res. 1979 Sep;45(3):420-8
pubmed: 455609
J Am Coll Cardiol. 2010 Apr 13;55(15):1619-25
pubmed: 20378081
Circ Cardiovasc Imaging. 2009 Sep;2(5):382-90
pubmed: 19808626
Am J Cardiol. 2008 Sep 1;102(5):616-20
pubmed: 18721523
Cardiovasc Res. 2011 Feb 1;89(2):265-72
pubmed: 20880837
J Am Coll Cardiol. 2000 Sep;36(3):891-6
pubmed: 10987616
J Hypertens. 1999 May;17(5):685-93
pubmed: 10403613
Circ Res. 1965 Jan;16:39-44
pubmed: 14252155
N Engl J Med. 1990 Jan 11;322(2):100-10
pubmed: 2403651
Chest. 1978 Apr;73(4):466-70
pubmed: 630963
Circ Cardiovasc Imaging. 2013 Sep;6(5):e28
pubmed: 24046383
JACC Cardiovasc Imaging. 2015 Feb;8(2):181-3
pubmed: 25677890
Am J Cardiol. 2001 Jul 1;88(1):53-8
pubmed: 11423058
Basic Res Cardiol. 1985 Jan-Feb;80(1):18-26
pubmed: 3985923
Ultrasound Med Biol. 2006 May;32(5):683-91
pubmed: 16677928
Am J Hypertens. 1990 Sep;3(9):688-96
pubmed: 2222977
PLoS One. 2013;8(4):e59915
pubmed: 23560059