Simulated ablation for detection of cells impacting paracrine signalling in histology analysis.
Breast Neoplasms
/ genetics
Cell Line, Tumor
Computer Simulation
Female
Gene Amplification
Histological Techniques
Humans
In Situ Hybridization, Fluorescence
Mathematical Concepts
Models, Biological
Mutation
Paracrine Communication
/ genetics
Receptor, ErbB-2
/ genetics
Signal Transduction
/ physiology
Tumor Microenvironment
/ genetics
cancer
histology
image analysis
paracrine
signalling
Journal
Mathematical medicine and biology : a journal of the IMA
ISSN: 1477-8602
Titre abrégé: Math Med Biol
Pays: England
ID NLM: 101182345
Informations de publication
Date de publication:
14 03 2019
14 03 2019
Historique:
received:
30
04
2017
accepted:
21
12
2017
pubmed:
17
2
2018
medline:
7
5
2019
entrez:
17
2
2018
Statut:
ppublish
Résumé
Intra-tumour phenotypic heterogeneity limits accuracy of clinical diagnostics and hampers the efficiency of anti-cancer therapies. Dealing with this cellular heterogeneity requires adequate understanding of its sources, which is extremely difficult, as phenotypes of tumour cells integrate hardwired (epi)mutational differences with the dynamic responses to microenvironmental cues. The later comes in form of both direct physical interactions, as well as inputs from gradients of secreted signalling molecules. Furthermore, tumour cells can not only receive microenvironmental cues, but also produce them. Despite high biological and clinical importance of understanding spatial aspects of paracrine signaling, adequate research tools are largely lacking. Here, a partial differential equation (PDE)-based mathematical model is developed that mimics the process of cell ablation. This model suggests how each cell might contribute to the microenvironment by either absorbing or secreting diffusible factors, and quantifies the extent to which observed intensities can be explained via diffusion-mediated signalling. The model allows for the separation of phenotypic responses to signalling gradients within tumour microenvironments from the combined influence of responses mediated by direct physical contact and hardwired (epi)genetic differences. The method is applied to a multi-channel immunofluorescence in situ hybridisation (iFISH)-stained breast cancer histological specimen, and correlations are investigated between: HER2 gene amplification, HER2 protein expression and cell interaction with the diffusible microenvironment. This approach allows partial deconvolution of the complex inputs that shape phenotypic heterogeneity of tumour cells and identifies cells that significantly impact gradients of signalling molecules.
Identifiants
pubmed: 29452382
pii: 4857315
doi: 10.1093/imammb/dqx022
pmc: PMC7197102
mid: NIHMS1580676
doi:
Substances chimiques
ERBB2 protein, human
EC 2.7.10.1
Receptor, ErbB-2
EC 2.7.10.1
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
93-112Subventions
Organisme : NCI NIH HHS
ID : U01 CA202958
Pays : United States
Informations de copyright
© The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications.
Références
Cancer Res. 2009 Nov 15;69(22):8797-806
pubmed: 19887618
Annu Rev Pathol. 2013 Jan 24;8:331-59
pubmed: 23157334
Clin Cancer Res. 2012 Jul 1;18(13):3592-602
pubmed: 22553343
Breast Cancer Res. 2013;15(5):316
pubmed: 24172068
Cancer Res. 2013 Mar 1;73(5):1635-46
pubmed: 23442322
Science. 2015 Apr 3;348(6230):69-74
pubmed: 25838375
Nature. 2012 Jul 26;487(7408):505-9
pubmed: 22763448
Cancer Res. 2014 May 1;74(9):2391-401
pubmed: 24788098
Sci Rep. 2016 Feb 10;6:21271
pubmed: 26861262
IEEE Trans Pattern Anal Mach Intell. 1979 Feb;1(2):224-7
pubmed: 21868852
Trends Biotechnol. 2010 Jun;28(6):281-90
pubmed: 20434785
Interface Focus. 2013 Aug 6;3(4):20130020
pubmed: 24511383
Cell. 2006 Dec 1;127(5):905-15
pubmed: 17129778
Clin Exp Metastasis. 2009;26(1):19-34
pubmed: 18543068
J Math Biol. 2009 Apr;58(4-5):579-624
pubmed: 18839176
Cancer Res. 2012 Oct 1;72(19):4875-82
pubmed: 23002210
Oncogene. 2007 Oct 4;26(45):6469-87
pubmed: 17471238
Nat Genet. 2006 Apr;38(4):468-73
pubmed: 16565718
Methods Cell Biol. 1995;48:225-50
pubmed: 8531727
Nat Rev Mol Cell Biol. 2014 Dec;15(12):802-12
pubmed: 25355505
Genome Biol. 2014 Aug 26;15(8):442
pubmed: 25168174
Clin Cancer Res. 2009 Mar 15;15(6):1845-7
pubmed: 19276254
Lab Invest. 2015 Apr;95(4):377-84
pubmed: 25599534
Clin Cancer Res. 2009 Mar 15;15(6):2010-21
pubmed: 19276287
PLoS Med. 2016 Feb 16;13(2):e1001961
pubmed: 26881778
Nat Rev Cancer. 2013 Nov;13(11):788-99
pubmed: 24132110
Nat Rev Cancer. 2012 Apr 19;12(5):323-34
pubmed: 22513401
Nat Commun. 2016 Aug 19;7:12158
pubmed: 27538785
Annu Rev Neurosci. 2005;28:451-501
pubmed: 16022603
Cell Rep. 2014 Feb 13;6(3):514-27
pubmed: 24462293