Structure and function of photosystem I in Cyanidioschyzon merolae.
Crystal structure
Cyanobacteria
Membrane complexes
Photosynthesis
Photosystem I
Synechocystis
Journal
Photosynthesis research
ISSN: 1573-5079
Titre abrégé: Photosynth Res
Pays: Netherlands
ID NLM: 100954728
Informations de publication
Date de publication:
Mar 2019
Mar 2019
Historique:
received:
12
02
2018
accepted:
21
03
2018
pubmed:
28
3
2018
medline:
5
3
2019
entrez:
28
3
2018
Statut:
ppublish
Résumé
The evolution of photosynthesis from primitive photosynthetic bacteria to higher plants has been driven by the need to adapt to a wide range of environmental conditions. The red alga Cyanidioschyzon merolae is a primitive organism, which is capable of performing photosynthesis in extreme acidic and hot environments. The study of its photosynthetic machinery may provide new insight on the evolutionary path of photosynthesis and on light harvesting and its regulation in eukaryotes. With that aim, the structural and functional properties of the PSI complex were investigated by biochemical characterization, mass spectrometry, and X-ray crystallography. PSI was purified from cells grown at 25 and 42 °C, crystallized and its crystal structure was solved at 4 Å resolution. The structure of C. merolae reveals a core complex with a crescent-shaped structure, formed by antenna proteins. In addition, the structural model shows the position of PsaO and PsaM. PsaG and PsaH are present in plant complex and are missing from the C. merolae model as expected. This paper sheds new light onto the evolution of photosynthesis, which gives a strong indication for the chimerical properties of red algae PSI. The subunit composition of the PSI core from C. merolae and its associated light-harvesting antennae suggests that it is an evolutionary and functional intermediate between cyanobacteria and plants.
Identifiants
pubmed: 29582227
doi: 10.1007/s11120-018-0501-4
pii: 10.1007/s11120-018-0501-4
doi:
Substances chimiques
Photosystem I Protein Complex
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
499-508Références
Acta Crystallogr D Biol Crystallogr. 1999 Jan;55(Pt 1):191-205
pubmed: 10089410
Nature. 2000 May 4;405(6782):69-72
pubmed: 10811219
Nature. 2001 Jun 21;411(6840):909-17
pubmed: 11418848
FEBS Lett. 2002 Aug 14;525(1-3):121-5
pubmed: 12163173
J Biol Chem. 2003 May 2;278(18):16135-41
pubmed: 12588873
J Mol Evol. 2003 Apr;56(4):485-97
pubmed: 12664168
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5160-3
pubmed: 12702760
Arch Mikrobiol. 1959;32(3):270-7
pubmed: 13628094
Curr Genet. 2004 Feb;45(2):61-75
pubmed: 14652691
Nature. 2003 Dec 11;426(6967):630-5
pubmed: 14668855
J Biol Chem. 2004 May 7;279(19):20009-17
pubmed: 14996834
Nature. 2004 Apr 8;428(6983):653-7
pubmed: 15071595
FEBS Lett. 2004 Apr 30;564(3):274-80
pubmed: 15111109
Plant Cell Physiol. 2004 Jun;45(6):667-71
pubmed: 15215501
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32
pubmed: 15572765
Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2184-95
pubmed: 15572771
Nat Rev Mol Cell Biol. 2004 Dec;5(12):971-82
pubmed: 15573135
Photosynth Res. 2000;63(3):225-36
pubmed: 16228433
Photosynth Res. 2004;80(1-3):137-55
pubmed: 16328816
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8060-5
pubmed: 16690741
Biochim Biophys Acta. 2007 May;1767(5):335-52
pubmed: 17442259
Nature. 2007 May 3;447(7140):58-63
pubmed: 17476261
J Biol Chem. 1977 Jul 10;252(13):4564-9
pubmed: 17601
Science. 2007 Oct 12;318(5848):245-50
pubmed: 17932292
Nat Rev Genet. 2008 Aug;9(8):605-18
pubmed: 18591983
PLoS One. 2008 Jul 09;3(7):e2621
pubmed: 18612431
Biochim Biophys Acta. 2009 Jan;1787(1):46-59
pubmed: 19007746
Proteomics. 2009 Jan;9(2):398-408
pubmed: 19142947
J Biol Chem. 1991 Oct 25;266(30):20146-51
pubmed: 1939076
Nature. 2009 Sep 10;461(7261):258-262
pubmed: 19710652
J Biol Chem. 2010 Jan 29;285(5):3478-86
pubmed: 19923216
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32
pubmed: 20124692
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
Plant J. 2010 Jun 1;62(5):886-97
pubmed: 20230507
Biochim Biophys Acta. 2011 Aug;1807(8):864-77
pubmed: 20920463
Biochim Biophys Acta. 2011 Aug;1807(8):856-63
pubmed: 20955682
Biophys J. 2011 Jan 5;100(1):135-43
pubmed: 21190665
Nature. 2011 May 5;473(7345):55-60
pubmed: 21499260
Am J Bot. 2004 Oct;91(10):1481-93
pubmed: 21652304
J Biol Chem. 2011 Dec 30;286(52):44878-87
pubmed: 22049081
J Plant Physiol. 2012 Nov 1;169(16):1639-53
pubmed: 22784471
Photosynth Res. 2013 Oct;116(2-3):153-66
pubmed: 23645376
J Am Chem Soc. 2013 Dec 11;135(49):18339-42
pubmed: 24261574
Elife. 2013 Jan 01;3:e01496
pubmed: 24473073
Mob Genet Elements. 2013 Nov 1;3(6):e27669
pubmed: 24475368
Plant J. 2014 Apr;78(2):181-91
pubmed: 24506306
Annu Rev Biochem. 2015;84:659-83
pubmed: 25747397
Science. 2015 May 29;348(6238):989-95
pubmed: 26023133
Elife. 2015 Jun 15;4:e07433
pubmed: 26076232
J Biol Chem. 2016 Mar 11;291(11):5676-87
pubmed: 26757821
New Phytol. 2017 Jan;213(2):714-726
pubmed: 27620972
Methods Enzymol. 1997;276:307-26
pubmed: 27754618
Nat Plants. 2017 Mar 01;3:17014
pubmed: 28248295
Plant Physiol. 2017 May;174(1):35-46
pubmed: 28270628
Photosynth Res. 2017 Sep;133(1-3):201-214
pubmed: 28405862
Plant Physiol. 2018 Feb;176(2):1433-1451
pubmed: 29187568
Biochim Biophys Acta Bioenerg. 2018 Sep;1859(9):645-654
pubmed: 29414678
J Biol Chem. 1981 Nov 25;256(22):11624-8
pubmed: 7028739
EMBO J. 1996 Dec 2;15(23):6374-84
pubmed: 8978664
J Biol Chem. 1999 Feb 12;274(7):4180-8
pubmed: 9933614