Grading of meningeal solitary fibrous tumors/hemangiopericytomas: analysis of the prognostic value of the Marseille Grading System in a cohort of 132 patients.
Aged
Aged, 80 and over
Cohort Studies
Disease-Free Survival
Female
Hemangiopericytoma
/ diagnosis
Humans
Male
Meningeal Neoplasms
/ diagnosis
Middle Aged
Neoplasm Staging
/ methods
Prognosis
Progression-Free Survival
Repressor Proteins
/ genetics
Reproducibility of Results
Retrospective Studies
STAT6 Transcription Factor
/ genetics
Solitary Fibrous Tumors
/ pathology
MGS
Marseille Grading System
central nervous system
grading
hemangiopericytoma
prognostic factors
solitary fibrous tumor
Journal
Brain pathology (Zurich, Switzerland)
ISSN: 1750-3639
Titre abrégé: Brain Pathol
Pays: Switzerland
ID NLM: 9216781
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
15
01
2018
accepted:
12
03
2018
pubmed:
31
3
2018
medline:
21
5
2019
entrez:
31
3
2018
Statut:
ppublish
Résumé
The finding that meningeal solitary fibrous tumors (SFTs) and meningeal hemangiopericytomas (HPCs) are both characterized by NAB2-STAT6 gene fusion has pushed their inclusion in the WHO 2016 Classification of tumors of the central nervous system (CNS) as different manifestations of the same entity. Given that the clinical behavior of the CNS SFT/HPC spectrum ranges from benign to malignant, it is presently unclear whether the grading criteria are still adequate. Here, we present the results of a study that analyzed the prognostic value of an updated version of the Marseille Grading System (MGS) in a retrospectively assembled cohort of 132 primary meningeal SFTs/HPCs with nuclear overexpression of STAT6. The median patient follow-up was 64 months (range 4-274 months); 73 cases (55%) were MGS I, 50 cases (38%) MGS II and 9 cases (7%) were MGS III. Progression-free survival (PFS) and disease-specific survival (DSS) were investigated using univariate analysis: the prognostic factors for PFS included MGS, extent of surgery, radiotherapy, chemotherapy and mitotic activity ≥5/10 high-power field (HPF). Moreover, MGS, radiotherapy, mitotic activity ≥5/10 HPF, and necrosis were the prognostic factors measured for DSS. In multivariate analysis, extent of surgery, mitotic activity ≥5/10 HPF, MGS I and MGS III were the independent prognostic factors measured for PFS while necrosis, MGS III and radiotherapy were the independent prognostic factors for DSS. In conclusion, our results show that assessing the malignancy risk of SFT/HPC should not rely on one single criterion like mitotic activity. Therefore, MGS is useful as it combines the value of different criteria. In particular, the combination of a high mitotic activity and necrosis (MGS III) indicates a particularly poor prognosis.
Identifiants
pubmed: 29600523
doi: 10.1111/bpa.12613
pmc: PMC8028559
doi:
Substances chimiques
NAB2 protein, human
0
Repressor Proteins
0
STAT6 Transcription Factor
0
STAT6 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18-27Informations de copyright
© 2018 International Society of Neuropathology.
Références
J Neurooncol. 2017 Jan;131(1):153-161
pubmed: 27671018
Am J Pathol. 2014 Apr;184(4):1209-1218
pubmed: 24513261
Hum Pathol. 2015 Mar;46(3):347-56
pubmed: 25582503
Nat Genet. 2013 Feb;45(2):131-2
pubmed: 23313954
Nat Genet. 2013 Feb;45(2):180-5
pubmed: 23313952
Adv Anat Pathol. 2011 Sep;18(5):356-92
pubmed: 21841406
Genes Chromosomes Cancer. 2013 Oct;52(10):873-86
pubmed: 23761323
Acta Neurochir (Wien). 2016 Apr;158(4):635-642
pubmed: 26887864
Mod Pathol. 2016 Dec;29(12):1511-1522
pubmed: 27562490
BMC Cancer. 2014 Aug 20;14:606
pubmed: 25146150
Cancer. 2002 Feb 15;94(4):1057-68
pubmed: 11920476
Clin Neurol Neurosurg. 2011 Nov;113(9):703-10
pubmed: 21872387
Am J Surg Pathol. 2014 Apr;38(4):552-9
pubmed: 24625420
J Pathol Transl Med. 2016 Mar;50(2):113-21
pubmed: 26657311
J Neurosurg. 2014 Feb;120(2):300-8
pubmed: 24286142
Int J Surg Pathol. 2011 Aug;19(4):476-86
pubmed: 21878477
Acta Neuropathol. 2013 May;125(5):651-8
pubmed: 23575898
J Neurosurg. 2018 Jun;128(6):1719-1724
pubmed: 28644098
Am J Clin Pathol. 2015 May;143(5):672-82
pubmed: 25873501
Ann Oncol. 2017 Aug 1;28(8):1979-1987
pubmed: 28838212
J Clin Neurosci. 2014 Apr;21(4):612-5
pubmed: 24231562
Acta Neurochir (Wien). 2012 Sep;154(9):1647-51
pubmed: 22790838
Am J Clin Oncol. 2017 Jun;40(3):223-227
pubmed: 25350465
Hum Pathol. 1976 Jan;7(1):61-82
pubmed: 1244311
Ann Surg Oncol. 2016 Dec;23(Suppl 5):954-961
pubmed: 27444109
Mod Pathol. 2014 Mar;27(3):390-5
pubmed: 24030747
Diagn Pathol. 2014 Nov 29;9:224
pubmed: 25432794
Int J Oncol. 2015;46(6):2595-605
pubmed: 25901508
J Neurooncol. 2017 Sep;134(2):387-395
pubmed: 28691143
Am J Surg Pathol. 2016 Aug;40(8):1031-40
pubmed: 26927892
Brain Tumor Pathol. 2016 Jul;33(3):169-74
pubmed: 27271270
Am J Surg Pathol. 2016 Feb;40(2):270-8
pubmed: 26448189
Mod Pathol. 2017 Oct;30(10):1433-1442
pubmed: 28731041
Mod Pathol. 2015 Oct;28(10):1324-35
pubmed: 26226844
Spine (Phila Pa 1976). 2008 May 20;33(12):E397-9
pubmed: 18496336
J Clin Neurosci. 2017 Oct;44:169-174
pubmed: 28711294
J Neuropathol Exp Neurol. 2016 Mar;75(3):263-71
pubmed: 26883114
Hum Pathol. 1991 Jan;22(1):84-91
pubmed: 1985083
Pathology. 2014 Aug;46(5):389-95
pubmed: 24977739
Brain Pathol. 2012 Jul;22(4):511-21
pubmed: 22082190
Am J Surg Pathol. 1989 Aug;13(8):640-58
pubmed: 2665534
Neurosurgery. 2013 Oct;73(4):624-30; discussion 630-1
pubmed: 23839520
Cancer. 2012 Mar 15;118(6):1628-36
pubmed: 21837675
Ann Surg Oncol. 2017 Dec;24(13):3865-3871
pubmed: 29039030
Mod Pathol. 2012 Sep;25(9):1298-306
pubmed: 22575866
World Neurosurg. 2014 Mar-Apr;81(3-4):556-62
pubmed: 24239740
Neurosurgery. 2013 Feb;72(2):203-9
pubmed: 23149953
Int J Surg Pathol. 2009 Jun;17(3):250-4
pubmed: 19443888
Int J Radiat Oncol Biol Phys. 2013 Mar 1;85(3):784-90
pubmed: 22867893