Basement membrane mechanics shape development: Lessons from the fly.
Journal
Matrix biology : journal of the International Society for Matrix Biology
ISSN: 1569-1802
Titre abrégé: Matrix Biol
Pays: Netherlands
ID NLM: 9432592
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
01
03
2018
revised:
10
04
2018
accepted:
11
04
2018
pubmed:
16
4
2018
medline:
19
6
2019
entrez:
16
4
2018
Statut:
ppublish
Résumé
Basement membrane plays a foundational role in the structure and maintenance of many tissues throughout the animal kingdom. In addition to signaling to cells through cell-surface receptors, basement membrane directly influences the development and maintenance of organ shape via its mechanical properties. The mechanical properties of basement membrane are dictated by its composition, geometry, and crosslinking. Distinguishing between the ways the basement membrane influences morphology in vivo poses a major challenge. Drosophila melanogaster, already established as a powerful model for the analysis of cell signaling, has in recent years emerged as a tractable model for understanding the roles of basement membrane stiffness in vivo, in shaping and maintaining the morphology of tissues and organs. In addition to the plethora of genetic tools available in flies, the major proteins found in vertebrate basement membranes are all present in Drosophila. Furthermore, Drosophila has fewer copies of the genes encoding these proteins, making flies more amenable to genetic manipulation than vertebrate models. Because the development of Drosophila organs has been well-characterized, these different organ systems offer a variety of contexts for analyzing the role of basement membrane in development. The developing egg chamber and central nervous system, for example, have been important models for assessing the role of basement membrane stiffness in influencing organ shape. Studies in the nervous system have also shown how basement membrane stiffness can influence cellular migration in vivo. Finally, work in the imaginal wing disc has illuminated a distinct mechanism by which basement membrane can alter organ shape and size, by sequestering signaling ligands. This mini-review highlights the recent discoveries pertaining to basement membrane mechanics during Drosophila development.
Identifiants
pubmed: 29656148
pii: S0945-053X(18)30098-2
doi: 10.1016/j.matbio.2018.04.004
pmc: PMC6185827
mid: NIHMS963439
pii:
doi:
Substances chimiques
Receptors, Cell Surface
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
72-81Subventions
Organisme : NIGMS NIH HHS
ID : R01 GM073883
Pays : United States
Organisme : NIAMS NIH HHS
ID : R21 AR072510
Pays : United States
Informations de copyright
Copyright © 2018 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Références
Cell Adh Migr. 2013 Jan-Feb;7(1):64-71
pubmed: 23154404
Cell Rep. 2015 Oct 20;13(3):546-560
pubmed: 26456819
Elife. 2017 Jun 27;6:
pubmed: 28653906
Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2721-6
pubmed: 17301221
J Cell Biol. 2000 Jul 24;150(2):F89-96
pubmed: 10908592
Dev Cell. 2012 Jan 17;22(1):12-23
pubmed: 22264728
Mech Dev. 1996 Aug;58(1-2):179-91
pubmed: 8887326
J Cell Sci. 1991 Dec;100 ( Pt 4):781-8
pubmed: 1814932
Dev Dyn. 2015 Apr;244(4):540-52
pubmed: 25529377
Nucleic Acids Res. 2017 Jan 4;45(D1):D663-D671
pubmed: 27799470
Elife. 2017 Apr 18;6:
pubmed: 28418331
Dev Cell. 2014 Nov 10;31(3):319-331
pubmed: 25443298
Development. 2017 Sep 1;144(17):3102-3113
pubmed: 28760813
Nat Commun. 2014 Nov 21;5:5511
pubmed: 25413675
Development. 2014 Aug;141(16):3233-42
pubmed: 25063458
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10334-9
pubmed: 22689955
Cell Rep. 2017 Oct 17;21(3):559-569
pubmed: 29045826
J Cell Biol. 1999 Nov 29;147(5):1109-22
pubmed: 10579729
Annu Rev Cell Biol. 1989;5:309-39
pubmed: 2557060
Development. 2004 Apr;131(7):1619-28
pubmed: 14998921
Mech Dev. 2017 Dec;148:18-39
pubmed: 28433748
Curr Opin Cell Biol. 2011 Oct;23(5):589-96
pubmed: 21632231
Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):331-6
pubmed: 24344311
Science. 2011 Feb 25;331(6020):1071-4
pubmed: 21212324
Cell. 2014 Jun 5;157(6):1380-92
pubmed: 24906154
Curr Top Membr. 2015;76:31-60
pubmed: 26610911
Dev Cell. 2016 Jul 11;38(1):47-60
pubmed: 27404358
Dev Cell. 2017 Jul 10;42(1):97-106.e4
pubmed: 28697337
Dev Cell. 2003 Jan;4(1):95-106
pubmed: 12530966
Cell Rep. 2017 Nov 7;21(6):1461-1470
pubmed: 29117553
J Neurosci. 2014 Jul 30;34(31):10311-24
pubmed: 25080592
Cell. 2006 Aug 25;126(4):677-89
pubmed: 16923388
Cell Rep. 2016 Mar 22;14(11):2503-10
pubmed: 26972006
Dev Cell. 2008 Mar;14(3):354-64
pubmed: 18331716
Mech Dev. 2017 Apr;144(Pt A):53-61
pubmed: 27913118
Development. 2017 Dec 1;144(23):4350-4362
pubmed: 29038305
Development. 2006 Oct;133(19):3805-15
pubmed: 16943280
Matrix Biol. 2017 Jan;57-58:366-373
pubmed: 27435904
Roux Arch Dev Biol. 1996 May;205(7-8):468-475
pubmed: 28306099
J Cell Biol. 2012 Mar 19;196(6):671-9
pubmed: 22431747
Science. 2009 Sep 4;325(5945):1230-4
pubmed: 19729652
Chromosoma. 2016 Sep;125(4):573-92
pubmed: 27153833
Development. 2016 Apr 15;143(8):1375-87
pubmed: 26952985
Mech Dev. 2014 Aug;133:105-16
pubmed: 24859129
Hepatology. 2008 Apr;47(4):1394-400
pubmed: 18307210
Dev Cell. 2011 Aug 16;21(2):245-56
pubmed: 21839919
Cold Spring Harb Perspect Biol. 2011 Feb 01;3(2):null
pubmed: 21421915
Curr Biol. 2017 Nov 20;27(22):3526-3534.e4
pubmed: 29129537
Dev Biol. 2015 Oct 15;406(2):212-21
pubmed: 26348027
Am J Physiol Renal Physiol. 2017 Sep 1;313(3):F596-F602
pubmed: 28424209
Nature. 2008 Sep 4;455(7209):72-7
pubmed: 18701888