Using data from multiple studies to develop a child growth correlation matrix.
SDS
child health
correlation
growth
Journal
Statistics in medicine
ISSN: 1097-0258
Titre abrégé: Stat Med
Pays: England
ID NLM: 8215016
Informations de publication
Date de publication:
30 08 2019
30 08 2019
Historique:
received:
12
04
2017
revised:
20
03
2018
accepted:
30
03
2018
pubmed:
28
4
2018
medline:
26
11
2020
entrez:
28
4
2018
Statut:
ppublish
Résumé
In many countries, the monitoring of child growth does not occur in a regular manner, and instead, we may have to rely on sporadic observations that are subject to substantial measurement error. In these countries, it can be difficult to identify patterns of poor growth, and faltering children may miss out on essential health interventions. The contribution of this paper is to provide a framework for pooling together multiple datasets, thus allowing us to overcome the issue of sparse data and provide improved estimates of growth. We use data from multiple longitudinal growth studies to construct a common correlation matrix that can be used in estimation and prediction of child growth. We propose a novel 2-stage approach: In stage 1, we construct a raw matrix via a set of univariate meta-analyses, and in stage 2, we smooth this raw matrix to obtain a more realistic correlation matrix. The methodology is illustrated using data from 16 child growth studies from the Bill and Melinda Gates Foundation's Healthy Birth Growth and Development knowledge integration project and identifies strong correlation for both height and weight between the ages of 4 and 12 years. We use a case study to provide an example of how this matrix can be used to help compute growth measures.
Identifiants
pubmed: 29700850
doi: 10.1002/sim.7696
pmc: PMC6767589
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3540-3554Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
© 2018 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
Références
EBioMedicine. 2015 Sep 25;2(11):1759-66
pubmed: 26870801
J Pediatr. 2004 Apr;144(4):461-5
pubmed: 15069393
Stat Med. 2019 Aug 30;38(19):3540-3554
pubmed: 29700850
PLoS One. 2015 Mar 27;10(3):e0122242
pubmed: 25816354
Am J Epidemiol. 1989 Apr;129(4):769-84
pubmed: 2923124
Stat Med. 2008 Mar 15;27(6):888-904
pubmed: 17600856
Int J Epidemiol. 2017 Apr 1;46(2):e13
pubmed: 26559544
Public Health Nutr. 2014 Sep;17(9):2131-7
pubmed: 24477079
J Infect Dis. 2001 Jun 15;183(12):1787-93
pubmed: 11372032
World Rev Nutr Diet. 2013;106:90-9
pubmed: 23428686
Eur J Clin Nutr. 1994 Feb;48 Suppl 1:S75-89
pubmed: 8005094
Am J Clin Nutr. 1982 Aug;36(2):294-302
pubmed: 7102586
Eur J Clin Nutr. 2008 Jan;62(1):39-50
pubmed: 17299460
Clin Infect Dis. 2012 Jan 15;54(2):185-92
pubmed: 22109945
Am J Epidemiol. 1998 Sep 1;148(5):497-506
pubmed: 9737562
Am J Clin Nutr. 2015 Mar;101(3):632-45
pubmed: 25733649
Sci Rep. 2018 Feb 14;8(1):2966
pubmed: 29445110
Proc Nutr Soc. 2000 May;59(2):317-24
pubmed: 10946801
Am J Clin Nutr. 2007 Feb;85(2):538-47
pubmed: 17284755
Ann Hum Biol. 2012 Sep;39(5):382-94
pubmed: 22780429
BMJ. 2012 Sep 25;345:e5931
pubmed: 23014901
Psychol Methods. 2005 Mar;10(1):40-64
pubmed: 15810868
Pediatrics. 2010 Mar;125(3):e473-80
pubmed: 20156903
Am J Epidemiol. 2003 Jan 15;157(2):166-75
pubmed: 12522024
Nutr J. 2009 Sep 29;8:44
pubmed: 19788734
Arch Dis Child. 1995 Jul;73(1):8-16
pubmed: 7639558
Stat Med. 1998 Dec 15;17(23):2697-707
pubmed: 9881416
Am J Clin Nutr. 2000 Aug;72(2 Suppl):521S-8S
pubmed: 10919954
Stat Comput. 2018;28(3):511-522
pubmed: 29449762
PLoS Med. 2017 Oct 25;14(10):e1002408
pubmed: 29069076