A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure.
Cluster-level exposures
Super Learner
cluster randomized trials
contagion
double robust
hierarchical
interference
multilevel
semi-parametric
targeted maximum likelihood estimation (TMLE)
Journal
Statistical methods in medical research
ISSN: 1477-0334
Titre abrégé: Stat Methods Med Res
Pays: England
ID NLM: 9212457
Informations de publication
Date de publication:
06 2019
06 2019
Historique:
pubmed:
21
6
2018
medline:
28
7
2020
entrez:
21
6
2018
Statut:
ppublish
Résumé
We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment.
Identifiants
pubmed: 29921160
doi: 10.1177/0962280218774936
pmc: PMC6173669
mid: NIHMS985939
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1761-1780Subventions
Organisme : NIAID NIH HHS
ID : R01 AI074345
Pays : United States
Organisme : NIAID NIH HHS
ID : R37 AI051164
Pays : United States
Organisme : NIAID NIH HHS
ID : U01 AI099959
Pays : United States
Organisme : NIAID NIH HHS
ID : UM1 AI068636
Pays : United States
Organisme : PEPFAR
Pays : United States
Références
Epidemiology. 1995 Mar;6(2):142-51
pubmed: 7742400
Int J Biostat. 2012 May 18;8(1):Article 11
pubmed: 22628356
J Epidemiol Community Health. 2006 Jul;60(7):578-86
pubmed: 16790829
Biometrics. 1982 Dec;38(4):963-74
pubmed: 7168798
Int J Biostat. 2010;6(1):Article 26
pubmed: 21731529
Biometrics. 2016 Dec;72(4):1066-1077
pubmed: 27060877
Stat Med. 2008 Oct 15;27(23):4658-77
pubmed: 17960577
Stat Med. 2012 May 10;31(10):915-30
pubmed: 22359361
Stat Med. 2009 Jan 30;28(2):221-39
pubmed: 19012297
J Acquir Immune Defic Syndr. 2015 Jun 1;69(2):234-40
pubmed: 26009832
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107
pubmed: 21405744
Int J Biostat. 2010;6(2):Article 2
pubmed: 21969992
N Engl J Med. 2015 Aug 27;373(9):808-22
pubmed: 26193126
Epidemiology. 2000 Sep;11(5):561-70
pubmed: 10955409
Biometrics. 1982 Sep;38(3):541-61
pubmed: 7171689
J Stat Softw. 2010;33(1):1-22
pubmed: 20808728
Ann Appl Stat. 2014 Jun;8(2):703-725
pubmed: 25505499
Int J Biostat. 2014;10(1):59-75
pubmed: 24566369
Stat Med. 2014 Dec 30;33(30):5371-87
pubmed: 25087978
N Engl J Med. 2015 Aug 27;373(9):795-807
pubmed: 26192873
Biometrics. 2005 Dec;61(4):962-73
pubmed: 16401269
Lancet HIV. 2016 May;3(5):e221-30
pubmed: 27126489
Epidemiology. 1991 Sep;2(5):331-8
pubmed: 1742381
Int J Biostat. 2010 Apr 01;6(1):Article 13
pubmed: 20628636
J Am Stat Assoc. 2008 Jun;103(482):832-842
pubmed: 19081744
Stat Med. 2009 Jan 15;28(1):39-64
pubmed: 18985634
Stat Appl Genet Mol Biol. 2007;6:Article25
pubmed: 17910531
Epidemiology. 2010 Jul;21(4):467-74
pubmed: 20220526
Am J Epidemiol. 2004 May 15;159(10):926-34
pubmed: 15128604
Stat Biosci. 2011 Sep 1;3(1):119-143
pubmed: 24039638
N Engl J Med. 2011 Aug 11;365(6):493-505
pubmed: 21767103
Lancet HIV. 2016 Mar;3(3):e111-9
pubmed: 26939734
J Neurosci. 2010 Aug 11;30(32):10601-8
pubmed: 20702692
Stat Med. 2016 Nov 10;35(25):4528-4545
pubmed: 27436797
Int J Biostat. 2010;6(1):Article 18
pubmed: 21731530
Soc Sci Med. 2004 May;58(10):1929-52
pubmed: 15020009
Am J Epidemiol. 2011 Apr 1;173(7):731-8
pubmed: 21415029
Stat Med. 2014 Feb 20;33(4):555-68
pubmed: 24038458
J R Soc Interface. 2018 Jan;15(138):
pubmed: 29343627
Int J Epidemiol. 2009 Dec;38(6):1599-611
pubmed: 19389875
Epidemiology. 2000 Sep;11(5):550-60
pubmed: 10955408