Selective BH3-mimetics targeting BCL-2, BCL-XL or MCL-1 induce severe mitochondrial perturbations.


Journal

Biological chemistry
ISSN: 1437-4315
Titre abrégé: Biol Chem
Pays: Germany
ID NLM: 9700112

Informations de publication

Date de publication:
28 01 2019
Historique:
received: 25 04 2018
accepted: 07 06 2018
pubmed: 21 6 2018
medline: 1 10 2019
entrez: 21 6 2018
Statut: ppublish

Résumé

Induction of apoptosis by selective BH3-mimetics is currently investigated as a novel strategy for cancer treatment. Here, we report that selective BH3-mimetics induce apoptosis in a variety of hematological malignancies. Apoptosis is accompanied by severe mitochondrial toxicities upstream of caspase activation. Specifically, the selective BH3-mimetics ABT-199, A-1331852 and S63845, which target BCL-2, BCL-XL and MCL-1, respectively, induce comparable ultrastructural changes including mitochondrial swelling, a decrease of mitochondrial matrix density and severe loss of cristae structure. These shared effects on mitochondrial morphology indicate a similar function of these anti-apoptotic BCL-2 proteins in maintaining mitochondrial integrity and function.

Identifiants

pubmed: 29924730
doi: 10.1515/hsz-2018-0233
pii: hsz-2018-0233
doi:

Substances chimiques

BCL2 protein, human 0
BCL2L1 protein, human 0
MCL1 protein, human 0
Myeloid Cell Leukemia Sequence 1 Protein 0
Proto-Oncogene Proteins c-bcl-2 0
bcl-X Protein 0
Caspases EC 3.4.22.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

181-185

Références

Adams, J.M. and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337.
Bernardi, P., Krauskopf, A., Basso, E., Petronilli, V., Blachly-Dyson, E., Di Lisa, F., and Forte, M.A. (2006). The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077–2099.
Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B., et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189.
Giorgio, V., Guo, L., Bassot, C., Petronilli, V., and Bernardi, P. (2018). Calcium and regulation of the mitochondrial permeability transition. Cell Calcium 70, 56–63.
Karch, J., Kwong, J.Q., Burr, A.R., Sargent, M.A., Elrod, J.W., Peixoto, P.M., Martinez-Caballero, S., Osinska, H., Cheng, E.H., Robbins, J., et al. (2013). Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice. eLife 2, e00772.
Kotschy, A., Szlavik, Z., Murray, J., Davidson, J., Maragno, A.L., Le Toumelin-Braizat, G., Chanrion, M., Kelly, G.L., Gong, J.N., Moujalled, D.M., et al. (2016). The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482.
Kroemer, G., Galluzzi, L., and Brenner, C. (2007). Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163.
Landes, T., Emorine, L.J., Courilleau, D., Rojo, M., Belenguer, P., and Arnaune-Pelloquin, L. (2010). The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep. 11, 459–465.
Leverson, J.D., Phillips, D.C., Mitten, M.J., Boghaert, E.R., Diaz, D., Tahir, S.K., Belmont, L.D., Nimmer, P., Xiao, Y., Ma, X.M., et al. (2015). Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med. 7, 279ra240.
Milani, M., Byrne, D.P., Greaves, G., Butterworth, M., Cohen, G.M., Eyers, P.A., and Varadarajan, S. (2017). DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis. Cell Death Dis. 8, e2552.
Perciavalle, R.M., Stewart, D.P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland, M.M., Pelletier, S., Schuetz, J.D., et al. (2012). Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 14, 575–583.
Pfeiffer, A., Schneider, J., Bueno, D., Dolga, A., Voss, T.D., Lewerenz, J., Wullner, V., and Methner, A. (2017). Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity. Free Radic. Biol. Med. 112, 350–359.
Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S.A., Mannella, C.A., and Korsmeyer, S.J. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2, 55–67.
Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton, B.D., Ding, H., Enschede, S.H., Fairbrother, W.J., et al. (2013). ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 19, 202–208.
Vogler, M., Dinsdale, D., Sun, X.M., Young, K.W., Butterworth, M., Nicotera, P., Dyer, M.J., and Cohen, G.M. (2008). A novel paradigm for rapid ABT-737-induced apoptosis involving outer mitochondrial membrane rupture in primary leukemia and lymphoma cells. Cell Death Differ. 15, 820–830.
Vogler, M., Dinsdale, D., Dyer, M.J., and Cohen, G.M. (2009). Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ. 16, 360–367.
Vogler, M., Dinsdale, D., Dyer, M.J., and Cohen, G.M. (2013). ABT-199 selectively inhibits BCL2 but not BCL2L1 and efficiently induces apoptosis of chronic lymphocytic leukaemic cells but not platelets. Br. J. Haematol. 163, 139–142.
Westphal, D., Kluck, R.M., and Dewson, G. (2014). Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ. 21, 196–205.
Yamaguchi, R., Lartigue, L., Perkins, G., Scott, R.T., Dixit, A., Kushnareva, Y., Kuwana, T., Ellisman, M.H., and Newmeyer, D.D. (2008). Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 31, 557–569.

Auteurs

Kristina Henz (K)

Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, D-60528 Frankfurt/Main, Germany.

Aoula Al-Zebeeby (A)

Department of Molecular and Clinical Cancer Medicine and Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.

Marion Basoglu (M)

Department of Biology, Goethe-University Frankfurt, Frankfurt, Germany.

Simone Fulda (S)

Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, D-60528 Frankfurt/Main, Germany.
German Cancer Consortium (DKTK), Heidelberg, Germany.
German Cancer Research Center (DKFZ), Heidelberg, Germany.

Gerald M Cohen (GM)

Department of Molecular and Clinical Cancer Medicine and Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.

Shankar Varadarajan (S)

Department of Molecular and Clinical Cancer Medicine and Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.

Meike Vogler (M)

Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, D-60528 Frankfurt/Main, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH