AdaSampling for Positive-Unlabeled and Label Noise Learning With Bioinformatics Applications.


Journal

IEEE transactions on cybernetics
ISSN: 2168-2275
Titre abrégé: IEEE Trans Cybern
Pays: United States
ID NLM: 101609393

Informations de publication

Date de publication:
May 2019
Historique:
pubmed: 12 7 2018
medline: 18 6 2019
entrez: 12 7 2018
Statut: ppublish

Résumé

Class labels are required for supervised learning but may be corrupted or missing in various applications. In binary classification, for example, when only a subset of positive instances is labeled whereas the remaining are unlabeled, positive-unlabeled (PU) learning is required to model from both positive and unlabeled data. Similarly, when class labels are corrupted by mislabeled instances, methods are needed for learning in the presence of class label noise (LN). Here we propose adaptive sampling (AdaSampling), a framework for both PU learning and learning with class LN. By iteratively estimating the class mislabeling probability with an adaptive sampling procedure, the proposed method progressively reduces the risk of selecting mislabeled instances for model training and subsequently constructs highly generalizable models even when a large proportion of mislabeled instances is present in the data. We demonstrate the utilities of proposed methods using simulation and benchmark data, and compare them to alternative approaches that are commonly used for PU learning and/or learning with LN. We then introduce two novel bioinformatics applications where AdaSampling is used to: 1) identify kinase-substrates from mass spectrometry-based phosphoproteomics data and 2) predict transcription factor target genes by integrating various next-generation sequencing data.

Identifiants

pubmed: 29993676
doi: 10.1109/TCYB.2018.2816984
doi:

Substances chimiques

Phosphoproteins 0
Proteins 0
Transcription Factors 0
Phosphotransferases EC 2.7.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1932-1943

Auteurs

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning

Exploring blood-brain barrier passage using atomic weighted vector and machine learning.

Yoan Martínez-López, Paulina Phoobane, Yanaima Jauriga et al.
1.00
Blood-Brain Barrier Machine Learning Humans Support Vector Machine Software

Understanding the role of machine learning in predicting progression of osteoarthritis.

Simone Castagno, Benjamin Gompels, Estelle Strangmark et al.
1.00
Humans Disease Progression Machine Learning Osteoarthritis

Classifications MeSH