Semisupervised Learning Based on a Novel Iterative Optimization Model for Saliency Detection.
Journal
IEEE transactions on neural networks and learning systems
ISSN: 2162-2388
Titre abrégé: IEEE Trans Neural Netw Learn Syst
Pays: United States
ID NLM: 101616214
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
pubmed:
12
7
2018
medline:
12
7
2018
entrez:
12
7
2018
Statut:
ppublish
Résumé
In this paper, we propose a novel iterative optimization model for bottom-up saliency detection. By exploring bottom-up saliency principles and semisupervised learning approaches, we design a high-performance saliency analysis method for wide ranging scenes. The proposed algorithm consists of two stages: 1) we develop a boundary homogeneity model to characterize the general position and the contour of the salient objects and 2) we propose a novel iterative optimization model, termed gradual saliency optimization, for further performance improvement. Our main contribution falls on the second stage, where we propose an iterative framework with self-repairing mechanisms for refining saliency maps. In this framework, we further develop a more comprehensive optimization function applying a novel semisupervised learning scheme to enhance the traditional saliency measure. More elaborately, the iterative method can gradually improve the output in each iteration and finally converge to high-quality saliency maps. Based on our experiments on four different public data sets, it can be demonstrated that our approach significantly outperforms the state-of-the-art methods.
Identifiants
pubmed: 29994225
doi: 10.1109/TNNLS.2018.2809702
doi:
Types de publication
Journal Article
Langues
eng