UUV's Hierarchical DE-Based Motion Planning in a Semi Dynamic Underwater Wireless Sensor Network.


Journal

IEEE transactions on cybernetics
ISSN: 2168-2275
Titre abrégé: IEEE Trans Cybern
Pays: United States
ID NLM: 101609393

Informations de publication

Date de publication:
Aug 2019
Historique:
pubmed: 12 7 2018
medline: 12 7 2018
entrez: 12 7 2018
Statut: ppublish

Résumé

This paper describes a reflexive multilayered mission planner with a mounted energy efficient local path planner for unmanned underwater vehicle's (UUV) navigation throughout complex subsea volume in a time variant semi-dynamic operation network. The UUV routing protocol in underwater wireless sensor network is generalized with a homogeneous dynamic knapsack-traveler salesman problem emerging with an adaptive path planning mechanism to address UUV's long-duration missions on dynamically changing subsea volume. The framework includes a base layer of global path planning, an inner layer of local path planning and an environmental sublayer. Such a multilayer integrated structure facilitates the framework to adopt any algorithm with real-time performance. The evolutionary technique known as differential evolution (DE) algorithm is employed by both base and inner layers to examine the performance of the framework in efficient mission timing and its resilience against the environmental disturbances. Relying on reactive nature of the framework and fast computational performance of the DE algorithm, the simulations show promising results and this new framework guarantees a safe and efficient deployment in a turbulent uncertain marine environment passing through a proper sequence of stations considering various constraint in a complex environment.

Identifiants

pubmed: 29994345
doi: 10.1109/TCYB.2018.2837134
doi:

Types de publication

Journal Article

Langues

eng

Pagination

2992-3005

Auteurs

Classifications MeSH