Multiple ψ -Type Stability of Cohen-Grossberg Neural Networks With Both Time-Varying Discrete Delays and Distributed Delays.


Journal

IEEE transactions on neural networks and learning systems
ISSN: 2162-2388
Titre abrégé: IEEE Trans Neural Netw Learn Syst
Pays: United States
ID NLM: 101616214

Informations de publication

Date de publication:
02 2019
Historique:
pubmed: 12 7 2018
medline: 12 7 2018
entrez: 12 7 2018
Statut: ppublish

Résumé

In this paper, multiple ψ -type stability of Cohen-Grossberg neural networks (CGNNs) with both time-varying discrete delays and distributed delays is investigated. By utilizing ψ -type functions combined with a new ψ -type integral inequality for treating distributed delay terms, some sufficient conditions are obtained to ensure that multiple equilibrium points are ψ -type stable for CGNNs with discrete and distributed delays, where the distributed delays include bounded and unbounded delays. These conditions of CGNNs with different output functions are less restrictive. More specifically, the algebraic criteria of the generalized model are applicable to several well-known neural network models by taking special parameters, and multiple different output functions are introduced to replace some of the same output functions, which improves the diversity of output results for the design of neural networks. In addition, the estimation of relative convergence rate of ψ -type stability is determined by the parameters of CGNNs and the selection of ψ -type functions. As a result, the existing results on multistability and monostability can be improved and extended. Finally, some numerical simulations are presented to illustrate the effectiveness of the obtained results.

Identifiants

pubmed: 29994620
doi: 10.1109/TNNLS.2018.2846249
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Pagination

566-579

Auteurs

Classifications MeSH