Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements.
Adipose Tissue
/ diagnostic imaging
Adult
Body Water
/ diagnostic imaging
Cross-Sectional Studies
Female
Humans
Isometric Contraction
/ physiology
Low Back Pain
/ diagnostic imaging
Lumbar Vertebrae
/ anatomy & histology
Magnetic Resonance Imaging
/ methods
Male
Paraspinal Muscles
/ anatomy & histology
Protons
Psoas Muscles
/ anatomy & histology
Young Adult
Magnetic resonance imaging
Muscle strength
Paraspinal muscle
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
13
03
2018
accepted:
22
06
2018
revised:
18
06
2018
pubmed:
18
7
2018
medline:
26
2
2019
entrez:
18
7
2018
Statut:
ppublish
Résumé
Chemical shift encoding-based water-fat MRI derived proton density fat fraction (PDFF) of the paraspinal muscles has been emerging as a surrogate marker in subjects with sarcopenia, lower back pain, injuries and neuromuscular disorders. The present study investigates the performance of paraspinal muscle PDFF and cross-sectional area (CSA) in predicting isometric muscle strength. Twenty-six healthy subjects (57.7% women; age: 30 ± 6 years) underwent 3T axial MRI of the lumbar spine using a six-echo 3D spoiled gradient echo sequence for chemical shift encoding-based water-fat separation. Erector spinae and psoas muscles were segmented bilaterally from L2 level to L5 level to determine CSA and PDFF. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer. Significant correlations between CSA and muscle strength measurements were observed for erector spinae muscle CSA (r = 0.40; p = 0.044) and psoas muscle CSA (r = 0.61; p = 0.001) with relative flexion strength. Erector spinae muscle PDFF correlated significantly with relative muscle strength (extension: r = -0.51; p = 0.008; flexion: r = -0.54; p = 0.005). Erector spinae muscle PDFF, but not CSA, remained a statistically significant (p < 0.05) predictor of relative extensor strength in multivariate regression models (R PDFF measurements improved the prediction of paraspinal muscle strength beyond CSA. Therefore, chemical shift encoding-based water-fat MRI may be used to detect subtle changes in the paraspinal muscle composition. • We investigated the association of paraspinal muscle fat fraction based on chemical shift encoding-based water-fat MRI with isometric strength measurements in healthy subjects. • Erector spinae muscle PDFF correlated significantly with relative muscle strength. • PDFF measurements improved prediction of paraspinal muscle strength beyond CSA.
Identifiants
pubmed: 30014202
doi: 10.1007/s00330-018-5631-8
pii: 10.1007/s00330-018-5631-8
doi:
Substances chimiques
Protons
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
599-608Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : DFG-SFB824/A9
Organisme : TUM Faculty of Medicine KKF grant
ID : H01
Références
J Manipulative Physiol Ther. 2001 Feb;24(2):110-22
pubmed: 11208223
J Appl Physiol (1985). 2001 Jun;90(6):2157-65
pubmed: 11356778
J Appl Physiol (1985). 2003 Oct;95(4):1717-27
pubmed: 12970377
J Gerontol A Biol Sci Med Sci. 2005 Jul;60(7):882-7
pubmed: 16079212
J Manipulative Physiol Ther. 2005 Oct;28(8):623-31
pubmed: 16226632
Eur Radiol. 2007 Feb;17(2):523-31
pubmed: 16733673
J Gerontol A Biol Sci Med Sci. 2006 Oct;61(10):1059-64
pubmed: 17077199
BMC Med. 2007 Jan 25;5:2
pubmed: 17254322
BMC Med Res Methodol. 2008 Oct 09;8:63
pubmed: 18844976
AJR Am J Roentgenol. 1991 Apr;156(4):765-8
pubmed: 2003443
Magn Reson Med. 2011 Nov;66(5):1312-26
pubmed: 21452279
PM R. 2011 May;3(5):472-9
pubmed: 21570036
J Magn Reson Imaging. 2012 Apr;35(4):899-907
pubmed: 22127958
Man Ther. 2012 Dec;17(6):584-8
pubmed: 22784801
Arthritis Care Res (Hoboken). 2013 Jan;65(1):44-52
pubmed: 23044710
Radiology. 2013 Feb;266(2):555-63
pubmed: 23143025
Invest Radiol. 1990 May;25(5):480-5
pubmed: 2345077
Phys Ther. 2013 Jul;93(7):873-88
pubmed: 23504343
Phys Ther. 2013 Nov;93(11):1540-50
pubmed: 23813083
PLoS One. 2013 Aug 14;8(8):e70993
pubmed: 23967145
Med Sci Sports Exerc. 2014;46(5):893-901
pubmed: 24091994
Osteoarthritis Cartilage. 2014 Feb;22(2):226-34
pubmed: 24361743
PLoS One. 2014 Jan 14;9(1):e85416
pubmed: 24454861
PLoS One. 2014 Feb 28;9(2):e90377
pubmed: 24587344
Muscle Nerve. 2014 Aug;50(2):170-6
pubmed: 24677256
Man Ther. 2015 Feb;20(1):90-5
pubmed: 25085813
Neurology. 2014 Sep 23;83(13):1178-83
pubmed: 25142899
Muscle Nerve. 2015 May;51(5):722-30
pubmed: 25155446
Spine (Phila Pa 1976). 2015 Jun 15;40(12):E694-700
pubmed: 25785961
Spine J. 2015 Jul 1;15(7):1593-601
pubmed: 25828477
Proc Nutr Soc. 2015 Nov;74(4):355-66
pubmed: 25851205
AJNR Am J Neuroradiol. 2016 Apr;37(4):742-8
pubmed: 26635285
J Comput Assist Tomogr. 2016 May-Jun;40(3):447-51
pubmed: 26953765
BMC Musculoskelet Disord. 2016 Jul 22;17:310
pubmed: 27448661
Spine (Phila Pa 1976). 2017 Apr 15;42(8):616-623
pubmed: 27517512
PLoS One. 2016 Sep 01;11(9):e0161356
pubmed: 27583444
Med Sci Sports Exerc. 2017 Mar;49(3):595-601
pubmed: 27741218
Phys Ther Sport. 2017 Mar;24:26-31
pubmed: 27964928
BMC Musculoskelet Disord. 2017 Jan 19;18(1):25
pubmed: 28103921
BMC Musculoskelet Disord. 2017 Apr 20;18(1):167
pubmed: 28427393
AJR Am J Roentgenol. 1983 Nov;141(5):895-8
pubmed: 6605058
Osteoporos Int. 1995;5(4):262-70
pubmed: 7492865
Eur J Appl Physiol Occup Physiol. 1994;69(5):408-13
pubmed: 7875137
Eur J Appl Physiol Occup Physiol. 1993;66(3):254-62
pubmed: 8477683