Visualization of the Intensity Field of a Focused Ultrasound Source In Situ.
Journal
IEEE transactions on medical imaging
ISSN: 1558-254X
Titre abrégé: IEEE Trans Med Imaging
Pays: United States
ID NLM: 8310780
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
pubmed:
22
7
2018
medline:
31
12
2019
entrez:
21
7
2018
Statut:
ppublish
Résumé
In an increasing number of applications of focused ultrasound (FUS) therapy, such as opening of the blood-brain barrier or collapsing microbubbles in a tumor, elevation of tissue temperature is not involved. In these cases, real-time visualization of the field distribution of the FUS source would allow localization of the FUS beam within the targeted tissue and allow repositioning of the FUS beam during tissue motion. In this paper, in order to visualize the FUS beam in situ, a 6-MHz single-element transducer ( f /2) was used as the FUS source and aligned perpendicular to a linear array which passively received scattered ultrasound from the sample. An image of the reconstructed intensity field pattern of the FUS source using bistatic beamforming was then superimposed on a registered B-mode image of the sample acquired using the same linear array. The superimposed image is used to provide anatomical context of the FUS beam in the sample being treated. The intensity field pattern reconstructed from a homogeneous scattering phantom was compared with the field characteristics of the FUS source characterized by the wire technique. The beamwidth estimates at the FUS focus using the in situ reconstruction technique and the wire technique were 1.5 and 1.2 mm, respectively. The depth-of-field estimates for the in situ reconstruction technique and the wire technique were 11.8 and 16.8 mm, respectively. The FUS beams were also visualized in a two-layer phantom and a chicken breast. The novel reconstruction technique was able to accurately visualize the field of an FUS source in the context of the interrogated medium.
Identifiants
pubmed: 30028696
doi: 10.1109/TMI.2018.2857481
pmc: PMC6329298
mid: NIHMS1517796
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
124-133Subventions
Organisme : NINDS NIH HHS
ID : R21 NS098174
Pays : United States
Références
Ultrasound Med Biol. 2003 Nov;29(11):1593-605
pubmed: 14654155
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Jan;64(1):177-191
pubmed: 27992331
Proc Natl Acad Sci U S A. 2006 Aug 1;103(31):11719-23
pubmed: 16868082
J Acoust Soc Am. 2009 Dec;126(6):3071-83
pubmed: 20000921
Nat Neurosci. 2014 Feb;17(2):322-9
pubmed: 24413698
NMR Biomed. 2011 Feb;24(2):145-53
pubmed: 21344531
Neurosurgery. 2010 Feb;66(2):323-32; discussion 332
pubmed: 20087132
Phys Med Biol. 2008 Mar 21;53(6):1773-93
pubmed: 18367802
J Acoust Soc Am. 1994 Mar;95(3):1641-9
pubmed: 8176064
Magn Reson Med. 2017 Aug;78(2):508-517
pubmed: 27699844
J Acoust Soc Am. 2012 Jul;132(1):544-53
pubmed: 22779500
Radiology. 2001 Sep;220(3):640-6
pubmed: 11526261
PLoS One. 2012;7(8):e42311
pubmed: 22870315
Eur Urol. 2014 May;65(5):907-14
pubmed: 23669165
Ultrasound Med Biol. 2007 Jan;33(1):95-104
pubmed: 17189051
IEEE Trans Ultrason Ferroelectr Freq Control. 1998;45(4):1088-99
pubmed: 18244264
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):E2033-41
pubmed: 22778441
Neuroimage. 2005 Jan 1;24(1):12-20
pubmed: 15588592
Br J Cancer. 2003 Dec 15;89(12):2227-33
pubmed: 14676799
J Natl Cancer Inst. 2014 Apr 23;106(5):
pubmed: 24760791
Eur Radiol. 2015 May;25(5):1317-28
pubmed: 25510445
N Engl J Med. 2016 Aug 25;375(8):730-9
pubmed: 27557301
Phys Med Biol. 2018 Mar 15;63(6):065009
pubmed: 29457587
Ultrasound Med Biol. 1979;5(2):149-57
pubmed: 505616
Ultrasound Med Biol. 1994;20(9):987-1000
pubmed: 7886858
IEEE Trans Biomed Eng. 1984 Jan;31(1):9-16
pubmed: 6724614
Radiology. 2012 Jan;262(1):252-61
pubmed: 22025731
IEEE Trans Biomed Eng. 2010 Jan;57(1):48-56
pubmed: 19628450
IEEE Trans Biomed Eng. 2013 Oct;60(10):2751-9
pubmed: 23708766