Evolutionary ecology of nectar.


Journal

Annals of botany
ISSN: 1095-8290
Titre abrégé: Ann Bot
Pays: England
ID NLM: 0372347

Informations de publication

Date de publication:
23 01 2019
Historique:
received: 11 03 2018
accepted: 16 06 2018
pubmed: 23 7 2018
medline: 28 12 2019
entrez: 23 7 2018
Statut: ppublish

Résumé

Floral nectar is an important determinant of plant-pollinator interactions and an integral component of pollination syndromes, suggesting it is under pollinator-mediated selection. However, compared to floral display traits, we know little about the evolutionary ecology of nectar. Combining a literature review with a meta-analysis approach, we summarize the evidence for heritable variation in nectar traits and link this variation to pollinator response and plant fitness. We further review associations between nectar traits and floral signals and discuss them in the context of honest signalling and targets of selection. Although nectar is strongly influenced by environmental factors, heritable variation in nectar production rate has been documented in several populations (mean h2 = 0.31). Almost nothing is known about heritability of other nectar traits, such as sugar and amino acid concentrations. Only a handful of studies have quantified selection on nectar traits, and few find statistically significant selection. Pollinator responses to nectar traits indicate they may drive selection, but studies tying pollinator preferences to plant fitness are lacking. So far, only one study conclusively identified pollinators as selective agents on a nectar trait, and the role of microbes, herbivores, nectar robbers and abiotic factors in nectar evolution is largely hypothetical. Finally, there is a trend for positive correlations among floral cues and nectar traits, indicating honest signalling of rewards. Important progress can be made by studies that quantify current selection on nectar in natural populations, as well as experimental approaches that identify the target traits and selective agents involved. Signal-reward associations suggest that correlational selection may shape evolution of nectar traits, and studies exploring these more complex forms of natural selection are needed. Many questions about nectar evolution remain unanswered, making this a field ripe for future research.

Sections du résumé

Background
Floral nectar is an important determinant of plant-pollinator interactions and an integral component of pollination syndromes, suggesting it is under pollinator-mediated selection. However, compared to floral display traits, we know little about the evolutionary ecology of nectar. Combining a literature review with a meta-analysis approach, we summarize the evidence for heritable variation in nectar traits and link this variation to pollinator response and plant fitness. We further review associations between nectar traits and floral signals and discuss them in the context of honest signalling and targets of selection.
Scope
Although nectar is strongly influenced by environmental factors, heritable variation in nectar production rate has been documented in several populations (mean h2 = 0.31). Almost nothing is known about heritability of other nectar traits, such as sugar and amino acid concentrations. Only a handful of studies have quantified selection on nectar traits, and few find statistically significant selection. Pollinator responses to nectar traits indicate they may drive selection, but studies tying pollinator preferences to plant fitness are lacking. So far, only one study conclusively identified pollinators as selective agents on a nectar trait, and the role of microbes, herbivores, nectar robbers and abiotic factors in nectar evolution is largely hypothetical. Finally, there is a trend for positive correlations among floral cues and nectar traits, indicating honest signalling of rewards.
Conclusions
Important progress can be made by studies that quantify current selection on nectar in natural populations, as well as experimental approaches that identify the target traits and selective agents involved. Signal-reward associations suggest that correlational selection may shape evolution of nectar traits, and studies exploring these more complex forms of natural selection are needed. Many questions about nectar evolution remain unanswered, making this a field ripe for future research.

Identifiants

pubmed: 30032269
pii: 5055672
doi: 10.1093/aob/mcy132
pmc: PMC6344224
doi:

Substances chimiques

Plant Nectar 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

247-261

Références

Antonie Van Leeuwenhoek. 2007 Jul;92(1):37-42
pubmed: 17205379
Curr Biol. 2012 Sep 11;22(17):1635-9
pubmed: 22840518
Heredity (Edinb). 1948 Dec;2(Pt. 3):349-68
pubmed: 18103134
Evolution. 1983 Nov;37(6):1210-1226
pubmed: 28556011
J Insect Physiol. 2012 Feb;58(2):286-92
pubmed: 22185936
Ecology. 2008 Sep;89(9):2369-76
pubmed: 18831156
J Evol Biol. 2013 Oct;26(10):2244-59
pubmed: 24028472
BMC Ecol. 2016 Mar 30;16:18
pubmed: 27030361
Ecol Lett. 2006 Aug;9(8):960-7
pubmed: 16913940
Trends Ecol Evol. 2013 May;28(5):307-15
pubmed: 23480953
Am Nat. 2017 Sep;190(3):363-376
pubmed: 28829646
J Chem Ecol. 2014 Jan;40(1):39-49
pubmed: 24317664
New Phytol. 2009 Aug;183(3):530-545
pubmed: 19552694
Science. 2013 Mar 8;339(6124):1202-4
pubmed: 23471406
Biol Rev Camb Philos Soc. 2007 Feb;82(1):83-111
pubmed: 17313525
Proc Biol Sci. 2004 Apr 22;271(1541):803-9
pubmed: 15255098
Evolution. 2014 Jul;68(7):1907-18
pubmed: 24635099
PLoS One. 2017 May 3;12(5):e0176865
pubmed: 28467507
Evolution. 1993 Feb;47(1):25-35
pubmed: 28568101
New Phytol. 2012 Mar;193(4):997-1008
pubmed: 22187939
Evolution. 2012 May;66(5):1344-59
pubmed: 22519776
Am J Bot. 2002 Jan;89(1):111-8
pubmed: 21669718
Oecologia. 1997 May;110(4):493-500
pubmed: 28307240
PLoS One. 2016 Feb 17;11(2):e0147975
pubmed: 26886766
Chemoecology. 2018;28(1):11-19
pubmed: 29540962
New Phytol. 2008;177(3):802-810
pubmed: 18005321
Ann Bot. 2007 Apr;99(4):653-60
pubmed: 17259227
Sci Rep. 2016 Sep 30;6:34499
pubmed: 27687244
Ecology. 2016 Jun;97(6):1400-9
pubmed: 27459771
Oecologia. 2012 Apr;168(4):1033-41
pubmed: 22011842
New Phytol. 2012 Aug;195(3):667-675
pubmed: 22646058
Ann Bot. 2009 Jun;103(9):1415-23
pubmed: 19208669
Oecologia. 2010 Aug;163(4):961-71
pubmed: 20461411
Ann Bot. 2012 Nov;110(6):1173-83
pubmed: 22915578
New Phytol. 2015 Dec;208(4):1264-75
pubmed: 26183369
Am J Bot. 1999 Apr;86(4):482-94
pubmed: 10205068
Ann Bot. 2006 Mar;97(3):317-44
pubmed: 16377653
J Biosci. 2007 Jun;32(4):769-74
pubmed: 17762150
Naturwissenschaften. 2006 Feb;93(2):72-9
pubmed: 16365739
Evolution. 1982 Jan;36(1):70-79
pubmed: 28581114
Ann Bot. 2001 Feb 1;87(2):267-273
pubmed: 32050743
Heredity (Edinb). 2004 May;92(5):446-51
pubmed: 15026780
Plant J. 2017 Mar;89(5):1009-1019
pubmed: 27889935
Am Nat. 2011 Feb;177(2):258-72
pubmed: 21460561
Trends Plant Sci. 2011 Apr;16(4):191-200
pubmed: 21345715
Planta. 2006 Dec;225(1):203-12
pubmed: 16871396
PLoS One. 2014 Jan 22;9(1):e86494
pubmed: 24466119
Plant J. 2012 Aug;71(4):529-38
pubmed: 22448647
Ecology. 2014 Jul;95(7):1792-8
pubmed: 25163113
Oecologia. 1979 Aug;41(3):301-304
pubmed: 28309767
PLoS One. 2017 Dec 6;12(12):e0188408
pubmed: 29211805
Ann Bot. 2006 May;97(5):767-77
pubmed: 16495315
Trends Ecol Evol. 2016 May;31(5):339-341
pubmed: 26987770
Plant J. 2007 Mar;49(5):840-54
pubmed: 17316174
Philos Trans R Soc Lond B Biol Sci. 2014 Aug 5;369(1648):
pubmed: 24958923
Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11910-5
pubmed: 10518550
J Exp Biol. 2010 Jul 15;213(Pt 14):2531-5
pubmed: 20581283
Methods Ecol Evol. 2018 Mar;9(3):734-743
pubmed: 29938013
J Evol Biol. 2010 Dec;23(12):2760-7
pubmed: 21121090
Environ Microbiol Rep. 2012 Feb;4(1):97-104
pubmed: 23757235
Heredity (Edinb). 2013 Sep;111(3):227-37
pubmed: 23652565
Heredity (Edinb). 2006 May;96(5):343-52
pubmed: 16598191
Microb Ecol. 2011 Jan;61(1):82-91
pubmed: 20449581
Evolution. 2016 Mar;70(3):716-24
pubmed: 26878831
Proc Natl Acad Sci U S A. 2011 Oct 4;108(40):16618-21
pubmed: 21949358
J Chem Ecol. 2014 May;40(5):476-83
pubmed: 24888745
Evolution. 2004 Dec;58(12):2657-68
pubmed: 15696745
Ecol Lett. 2012 Oct;15(10):1140-8
pubmed: 22834564
Plant Biol (Stuttg). 2011 Nov;13(6):848-56
pubmed: 21972840
J Chem Ecol. 2005 Dec;31(12):2791-804
pubmed: 16365705
Am Nat. 2005 Apr;165(4):411-9
pubmed: 15791533
Plant Biol (Stuttg). 2016 Jan;18(1):9-14
pubmed: 25677960
Proc Biol Sci. 2012 Dec 05;280(1752):20122601
pubmed: 23222453
Ecology. 2012 Aug;93(8):1880-91
pubmed: 22928416
Evolution. 2008 Jul;62(7):1738-1750
pubmed: 18410534
J Comp Physiol B. 2009 Aug;179(6):673-9
pubmed: 19266205
Oecologia. 1980 Jul;46(1):68-74
pubmed: 28310628
Evolution. 1996 Aug;50(4):1442-1453
pubmed: 28565718
Trends Plant Sci. 2004 Feb;9(2):65-9
pubmed: 15102371
New Phytol. 2012 Mar;193(4):1039-1048
pubmed: 22225567
Proc Biol Sci. 2014 Mar 19;281(1782):20132934
pubmed: 24648219
Science. 2008 Aug 29;321(5893):1200-2
pubmed: 18755975
Curr Biol. 2017 Aug 21;27(16):2552-2558.e3
pubmed: 28803876
Ecol Lett. 2012 Mar;15(3):227-34
pubmed: 22221802
Evolution. 1990 Dec;44(8):1947-1955
pubmed: 28564434
J Chem Ecol. 2014 Apr;40(4):325-30
pubmed: 24692053
New Phytol. 2017 May;214(3):1381-1389
pubmed: 28240377
Ecol Lett. 2006 Dec;9(12):1351-65
pubmed: 17118009
Oecologia. 1981 May;49(2):154-157
pubmed: 28309303
Ecology. 2016 Jun;97(6):1410-9
pubmed: 27459772
New Phytol. 2018 Nov;220(3):750-759
pubmed: 28960308
Evolution. 1985 May;39(3):505-522
pubmed: 28561964
Ann Bot. 2010 Aug;106(2):359-69
pubmed: 20519239
Ecol Lett. 2015 Feb;18(2):135-43
pubmed: 25491788
Ecology. 2016 Feb;97(2):325-37
pubmed: 27145608
Proc Biol Sci. 2004 Dec 7;271(1556):2481-8
pubmed: 15590599
Oecologia. 1983 Aug;59(1):40-8
pubmed: 25024144
Ann Bot. 2018 Jun 8;121(7):1343-1349
pubmed: 29562323
BMC Plant Biol. 2013 Jul 13;13:101
pubmed: 23848992
Am J Bot. 2001 Mar;88(3):447-54
pubmed: 11250822
New Phytol. 2010 Oct;188(2):393-402
pubmed: 20723076
Oecologia. 1998 Jan;113(3):341-349
pubmed: 28307818
Am J Bot. 2001 Mar;88(3):438-46
pubmed: 11250821
Am J Bot. 2011 Aug;98(8):1299-308
pubmed: 21795735
FEMS Microbiol Ecol. 2004 Nov 1;50(2):87-100
pubmed: 19712367
Proc Biol Sci. 2007 Oct 22;274(1625):2595-601
pubmed: 17711839
Am J Bot. 2006 Apr;93(4):575-81
pubmed: 21646218
Ann Bot. 2009 Feb;103(3):533-42
pubmed: 19074446
FEMS Microbiol Ecol. 2012 Jun;80(3):591-602
pubmed: 22324904

Auteurs

Amy L Parachnowitsch (AL)

Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.

Jessamyn S Manson (JS)

Department of Biology, University of Virginia, Charlottesville, VA, USA.

Nina Sletvold (N)

Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH