Molecular imaging mass spectrometry for probing protein dynamics in neurodegenerative disease pathology.


Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
11 2019
Historique:
received: 15 04 2018
revised: 03 07 2018
revised: 10 07 2018
accepted: 12 07 2018
pubmed: 25 7 2018
medline: 6 5 2020
entrez: 25 7 2018
Statut: ppublish

Résumé

Recent advances in the understanding of basic pathological mechanisms in various neurological diseases depend directly on the development of novel bioanalytical technologies that allow sensitive and specific chemical imaging at high resolution in cells and tissues. Mass spectrometry-based molecular imaging (IMS) has gained increasing popularity in biomedical research for mapping the spatial distribution of molecular species in situ. The technology allows for comprehensive, untargeted delineation of in situ distribution profiles of metabolites, lipids, peptides and proteins. A major advantage of IMS over conventional histochemical techniques is its superior molecular specificity. Imaging mass spectrometry has therefore great potential for probing molecular regulations in CNS-derived tissues and cells for understanding neurodegenerative disease mechanism. The goal of this review is to familiarize the reader with the experimental workflow, instrumental developments and methodological challenges as well as to give a concise overview of the major advances and recent developments and applications of IMS-based protein and peptide profiling with particular focus on neurodegenerative diseases. This article is part of the Special Issue "Proteomics".

Identifiants

pubmed: 30040875
doi: 10.1111/jnc.14559
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

488-506

Subventions

Organisme : Medical Research Council
ID : MR/S005145/1
Pays : United Kingdom

Informations de copyright

© 2018 International Society for Neurochemistry.

Références

Aebersold R. and Mann M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207.
Aerni H. R., Cornett D. S. and Caprioli R. M. (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal. Chem. 78, 827-834.
Aichler M. and Walch A. (2015) MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab. Invest. 95, 422-431.
Alexandrov T. (2012) MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics 13, S11.
Altelaar A. F., Klinkert I., Jalink K., de Lange R. P., Adan R. A., Heeren R. M. and Piersma S. R. (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal. Chem. 78, 734-742.
Andersson M., Groseclose M. R., Deutch A. Y. and Caprioli R. M. (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat. Methods 5, 101-108.
Arribat Y., Talmat-Amar Y., Paucard A. et al. (2014) Systemic delivery of P42 peptide: a new weapon to fight Huntington inverted question marks disease. Acta Neuropathol. Commun. 2, 86.
Aslund A., Sigurdson C. J., Klingstedt T. et al. (2009) Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol. 4, 673-684.
Baker T. C., Han J. and Borchers C. H. (2017) Recent advancements in matrix-assisted laser desorption/ionization mass spectrometry imaging. Curr. Opin. Biotechnol. 43, 62-69.
Baluya D. L., Garrett T. J. and Yost R. A. (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal. Chem. 79, 6862-6867.
Beavis R. C. and Chait B. T. (1989) Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom. 3, 432-435.
Beavis R. C., Chaudhary T. and Chait B. T. (1992) α-Cyano-4-hydroxycinnamic acid as a matrix for matrix-assisted laser desorption mass spectrometry. Org. Mass Spectrom. 27, 156-158.
Bemis K. D., Harry A., Eberlin L. S., Ferreira C., van de Ven S. M., Mallick P., Stolowitz M. and Vitek O. (2015) Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. Bioinformatics 31, 2418-2420.
Bocklitz T. W., Crecelius A. C., Matthäus C., Tarcea N., von Eggeling F., Schmitt M., Schubert U. S. and Popp J. (2013) Deeper understanding of biological tissue: quantitative correlation of MALDI-TOF and Raman imaging. Anal. Chem. 85, 10829-10834.
Bodzon-Kulakowska A. and Suder P. (2016) Imaging mass spectrometry: instrumentation, applications, and combination with other visualization techniques. Mass Spectrom. Rev. 35, 147-169.
Bond N. J., Koulman A., Griffin J. L. and Hall Z. (2017) massPix: an R package for annotation and interpretation of mass spectrometry imaging data for lipidomics. Metabolomics 13, 128.
Bonnel D., Longuespee R., Franck J., Roudbaraki M., Gosset P., Day R., Salzet M. and Fournier I. (2011) Multivariate analyses for biomarkers hunting and validation through on-tissue bottom-up or in-source decay in MALDI-MSI: application to prostate cancer. Anal. Bioanal. Chem. 401, 149-165.
Buck A., Ly A., Balluff B. et al. (2015) High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 237, 123-132.
Caprioli R. M., Farmer T. B. and Gile J. (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal. Chem. 69, 4751-4760.
Carlred L., Michno W., Kaya I., Sjovall P., Syvanen S. and Hanrieder J. (2016) Probing amyloid-beta pathology in transgenic Alzheimer's disease (tgArcSwe) mice using MALDI imaging mass spectrometry. J. Neurochem. 138, 469-478.
Chaurand P., Schwartz S. A., Billheimer D., Xu B. J., Crecelius A. and Caprioli R. M. (2004) Integrating histology and imaging mass spectrometry. Anal. Chem. 76, 1145-1155.
Chen R., Jiang X., Conaway M. C., Mohtashemi I., Hui L., Viner R. and Li L. (2010) Mass spectral analysis of neuropeptide expression and distribution in the nervous system of the lobster Homarus americanus. J. Proteome Res. 9, 818-832.
Cornett D. S., Reyzer M. L., Chaurand P. and Caprioli R. M. (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat. Methods 4, 828-833.
De Sio G., Smith A. J., Galli M., Garancini M., Chinello C., Bono F., Pagni F. and Magni F. (2015) A MALDI-mass spectrometry imaging method applicable to different formalin-fixed paraffin-embedded human tissues. Mol. BioSyst. 11, 1507-1514.
Deininger S.-O., Ebert M. P., Fuetterer A., Gerhard M. and Roecken C. (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J. Proteome Res. 7, 5230-5236.
Deutskens F., Yang J. and Caprioli R. M. (2011) High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J. Mass Spectrom. 46, 568-571.
Dilillo M., Ait-Belkacem R., Esteve C. et al. (2017) Ultra-high mass resolution MALDI imaging mass spectrometry of proteins and metabolites in a mouse model of glioblastoma. Sci. Rep. 7, 603.
Dreisewerd K. (2014) Recent methodological advances in MALDI mass spectrometry. Anal. Bioanal. Chem. 406, 2261-2278.
Dreisewerd K., Draude F., Kruppe S., Rohlfing A., Berkenkamp S. and Pohlentz G. (2007a) Molecular analysis of native tissue and whole oils by infrared laser mass spectrometry. Anal. Chem. 79, 4514-4520.
Dreisewerd K., Lemaire R., Pohlentz G., Salzet M., Wisztorski M., Berkenkamp S. and Fournier I. (2007b) Molecular profiling of native and matrix-coated tissue slices from rat brain by infrared and ultraviolet laser desorption/ionization orthogonal time-of-flight mass spectrometry. Anal. Chem. 79, 2463-2471.
Ellis S. R., Paine M. R. L., Eijkel G. B., Pauling J. K., Husen P., Jervelund M. W., Hermansson M., Ejsing C. S. and Heeren R. M. A. (2018) Automated, parallel mass spectrometry imaging and structural identification of lipids. Nat. Methods 15, 515-518.
Esteve C., Jones E. A., Kell D. B., Boutin H. and McDonnell L. A. (2017) Mass spectrometry imaging shows major derangements in neurogranin and in purine metabolism in the triple-knockout 3xTg Alzheimer mouse model. Biochem. Biophys. Acta. 1865, 747-754.
Evans C. L., Potma E. O., Puoris'haag M., Cote D., Lin C. P. and Xie X. S. (2005) Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl Acad. Sci. USA 102, 16807-16812.
Falth M., Skold K., Norrman M., Svensson M., Fenyo D. and Andren P. E. (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol. Cell Proteomics 5, 998-1005.
Falth M., Savitski M. M., Nielsen M. L., Kjeldsen F., Andren P. E. and Zubarev R. A. (2007a) SwedCAD, a database of annotated high-mass accuracy MS/MS spectra of tryptic peptides. J. Proteome Res. 6, 4063-4067.
Falth M., Skold K., Svensson M., Nilsson A., Fenyo D. and Andren P. E. (2007b) Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides. Mol. Cell Proteomics 6, 1188-1197.
Feider C. L., Elizondo N. and Eberlin L. S. (2016) Ambient ionization and FAIMS mass spectrometry for enhanced imaging of multiply charged molecular ions in biological tissues. Anal. Chem. 88, 11533-11541.
Fenn J. B., Mann M., Meng C. K., Wong S. F. and Whitehouse C. M. (1989) Electrospray ionization for mass-spectrometry of large biomolecules. Science 246, 64-71.
Fletcher J. S., Vickerman J. C. and Winograd N. (2011) Label free biochemical 2D and 3D imaging using secondary ion mass spectrometry. Curr. Opin. Chem. Biol. 15, 733-740.
Fonville J. M., Carter C., Cloarec O., Nicholson J. K., Lindon J. C., Bunch J. and Holmes E. (2012) Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal. Chem. 84, 1310-1319.
Fülöp A., Sammour D. A., Erich K., von Gerichten J., van Hoogevest P., Sandhoff R. and Hopf C. (2016) Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry. Sci. Rep. 6, 33791.
Gibb S. and Strimmer K. (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28, 2270-2271.
Gomes I., Sierra S. and Devi L. A. (2016) Detection of receptor heteromerization using in situ proximity ligation assay. Curr. Protoc. Pharmacol. 75, 2.16.11-2.16.31.
Goodwin R. J. A., Dungworth J. C., Cobb S. R. and Pitt A. R. (2008) Time-dependent evolution of tissue markers by MALDI-MS imaging. Proteomics 8, 3801-3808.
Goodwin R. J. A., Lang A. M., Allingham H., Boren M. and Pitt A. R. (2010) Stopping the clock on proteomic degradation by heat treatment at the point of tissue excision. Proteomics 10, 1751-1761.
Goodwin R. J., Mackay C. L., Nilsson A., Harrison D. J., Farde L., Andren P. E. and Iverson S. L. (2011) Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal. Chem. 83, 9694-9701.
Goodwin R. J., Nilsson A., Mackay C. L., Swales J. G., Johansson M. K., Billger M., Andren P. E. and Iverson S. L. (2016) Exemplifying the screening power of mass spectrometry imaging over label-based technologies for simultaneous monitoring of drug and metabolite distributions in tissue sections. J. Biomol. Screen. 21, 187-193.
Gorzolka K. and Walch A. (2014) MALDI mass spectrometry imaging of formalin-fixed paraffin-embedded tissues in clinical research. Histol. Histopathol. 29, 1365-1376.
Graham D. J. and Castner D. G. (2012) Multivariate analysis of ToF-SIMS data from multicomponent systems: the why, when, and how. Biointerphases 7, 49.
Groseclose M. R., Andersson M., Hardesty W. M. and Caprioli R. M. (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J. Mass Spectrom. 42, 254-262.
Gustafsson J. O., Oehler M. K., McColl S. R. and Hoffmann P. (2010) Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. J. Proteome Res. 9, 4315-4328.
Hankin J. A., Barkley R. M. and Murphy R. C. (2007) Sublimation as a method of matrix application for mass spectrometric imaging. J. Am. Soc. Mass Spectrom. 18, 1646-1652.
Hanrieder J., Ljungdahl A., Falth M., Mammo S. E., Bergquist J. and Andersson M. (2011) L-DOPA-induced dyskinesia is associated with regional increase of striatal dynorphin peptides as elucidated by imaging mass spectrometry. Mol. Cell Proteomics 10, M111.009308.
Hanrieder J., Ekegren T., Andersson M. and Bergquist J. (2012a) MALDI imaging mass spectrometry of human post mortem spinal cord in amyotrophic lateral sclerosis. J. Neurochem. 124, 695-707.
Hanrieder J., Ljungdahl A. and Andersson M. (2012b) MALDI imaging mass spectrometry of neuropeptides in Parkinson's disease. J. Vis. Exp. 2012 (60), pii: 3445. doi: 10.3791/3445.
Hanrieder J., Malmberg P., Lindberg O. R., Fletcher J. S. and Ewing A. G. (2013a) Time-of-flight secondary ion mass spectrometry based molecular histology of human spinal cord tissue and motor neurons. Anal. Chem. 85, 8741-8748.
Hanrieder J., Phan N. T., Kurczy M. E. and Ewing A. G. (2013b) Imaging mass spectrometry in neuroscience. ACS Chem. Neurosci. 4, 666-679.
Hanrieder J., Malmberg P. and Ewing A. G. (2015) Spatial neuroproteomics using imaging mass spectrometry. Biochem. Biophys. Acta. 1854, 718-731.
Henderson A., Fletcher J. S. and Vickerman J. C. (2009) A comparison of PCA and MAF for ToF-SIMS image interpretation. Surf. Interface Anal. 41, 666-674.
Hishimoto A., Nomaru H., Ye K. et al. (2016) Molecular histochemistry identifies peptidomic organization and reorganization along striatal projection units. Biol. Psychiat. 79, 415-420.
Hummon A. B., Amare A. and Sweedler J. V. (2006) Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom. Rev. 25, 77-98.
Jones E. A., Shyti R., van Zeijl R. J. M., van Heiningen S. H., Ferrari M. D., Deelder A. M., Tolner E. A., van den Maagdenberg A. M. J. M. and McDonnell L. A. (2012) Imaging mass spectrometry to visualize biomolecule distributions in mouse brain tissue following hemispheric cortical spreading depression. J. Proteomics. 75, 5027-5035.
Juan A. (2018) Hyperspectral image analysis. When space meets chemistry. J. Chemom. 32, e2985.
Jurchen J. C., Rubakhin S. S. and Sweedler J. V. (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J. Am. Soc. Mass Spectrom. 16, 1654-1659.
Kakuda N., Miyasaka T., Iwasaki N., Nirasawa T., Wada-Kakuda S., Takahashi-Fujigasaki J., Murayama S., Ihara Y. and Ikegawa M. (2017) Distinct deposition of amyloid-beta species in brains with Alzheimer's disease pathology visualized with MALDI imaging mass spectrometry. Acta Neuropathol. Commun. 5, 73.
Källback P., Nilsson A., Shariatgorji M. and Andrén P. E. (2016) msIQuant - quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346-4353.
Karas M. and Hillenkamp F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal. Chem. 60, 2299-2301.
Karlsson O., Berg A. L., Lindstrom A. K. et al. (2012) Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol. Sci. 130, 391-404.
Karlsson O., Bergquist J. and Andersson M. (2014) Quality measures of imaging mass spectrometry aids in revealing long-term striatal protein changes induced by neonatal exposure to the cyanobacterial toxin beta-N-methylamino-l-alanine (BMAA). Mol. Cell Proteomics 13, 93-104.
Kaya I., Brinet D., Michno W., Baskurt M., Zetterberg H., Blenow K. and Hanrieder J. (2017a) Novel trimodal MALDI imaging mass spectrometry (IMS3) at 10 μm reveals spatial lipid and peptide correlates implicated in abeta plaque pathology in Alzheimer's disease. ACS Chem. Neurosci. 8, 2778-2790.
Kaya I., Brinet D., Michno W., Syvanen S., Sehlin D., Zetterberg H., Blennow K. and Hanrieder J. (2017b) Delineating amyloid plaque associated neuronal sphingolipids in transgenic Alzheimer's disease mice (tgArcSwe) using MALDI imaging mass spectrometry. ACS Chem. Neurosci. 8, 347-355.
Kaya I., Michno W., Brinet D., Iacone Y., Zanni G., Blennow K., Zetterberg H. and Hanrieder J. (2017c) Histology-compatible MALDI mass spectrometry based imaging of neuronal lipids for subsequent immunofluorescent staining. Anal. Chem. 89, 4685-4694.
Kaya I., Zetterberg H., Blennow K. and Hanrieder J. (2018) Shedding light on the molecular pathology of amyloid plaques in transgenic Alzheimer's disease mice using multimodal MALDI imaging mass spectrometry. ACS Chem. Neurosci. 9, 1802-1817.
Kelley A. R., Perry G., Bethea C., Castellani R. J. and Bach S. B. (2016a) Molecular mapping Alzheimer's disease: MALDI imaging of formalin-fixed, paraffin-embedded human hippocampal tissue. Open Neurol. J. 10, 88-98.
Kelley A. R., Perry G., Castellani R. J. and Bach S. B. (2016b) Laser-induced in-source decay applied to the determination of amyloid-beta in Alzheimer's brains. ACS Chem. Neurosci. 7, 261-268.
Kiss A., Smith D. F., Reschke B. R., Powell M. J. and Heeren R. M. (2014) Top-down mass spectrometry imaging of intact proteins by laser ablation ESI FT-ICR MS. Proteomics 14, 1283-1289.
Klinkert I., Chughtai K., Ellis S. R. and Heeren R. M. A. (2014) Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int. J. Mass Spectrom. 362, 40-47.
Kompauer M., Heiles S. and Spengler B. (2017) Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-mum lateral resolution. Nat. Methods 14, 90-96.
Kruse R. and Sweedler J. V. (2003) Spatial profiling invertebrate ganglia using MALDI MS. J. Am. Soc. Mass Spectrom. 14, 752-759.
Kvartsberg H., Duits F. H., Ingelsson M. et al. (2015) Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer's disease. Alzheimers Dement. 11, 1180-1190.
Landgraf R. R., Prieto Conaway M. C., Garrett T. J., Stacpoole P. W. and Yost R. A. (2009) Imaging of lipids in spinal cord using intermediate pressure matrix-assisted laser desorption-linear ion trap/Orbitrap MS. Anal. Chem. 81, 8488-8495.
Lavenant G. T., Zavalin A. I. and Caprioli R. M. (2013) Targeted multiplex imaging mass spectrometry in transmission geometry for subcellular spatial resolution. J. Am. Soc. Mass Spectrom. 24, 609-614.
Ljungdahl A., Hanrieder J., Faelth M., Bergquist J. and Andersson M. (2011) Imaging mass spectrometry reveals elevated nigral levels of dynorphin neuropeptides in L-DOPA-induced dyskinesia in rat model of Parkinson's disease. PLoS ONE 6, e25653.
Longuespee R., Fleron M., Pottier C. et al. (2014) Tissue proteomics for the next decade? Towards a molecular dimension in histology. OMICS 18, 539-552.
Luxembourg S. L., Mize T. H., McDonnell L. A. and Heeren R. M. (2004) High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal. Chem. 76, 5339-5344.
Maccarrone G., Nischwitz S., Deininger S.-O., Hornung J., König F. B., Stadelmann C., Turck C. W. and Weber F. (2017) MALDI imaging mass spectrometry analysis-A new approach for protein mapping in multiple sclerosis brain lesions. J. Chromatogr. B 1047, 131-140.
Marie-France R., Jean-Pierre B., Brendan P. et al. (2014) Software tools of the computis European project to process mass spectrometry images. Eur. J. Mass Spectrom. 20, 351-360.
Martin-Lorenzo M., Balluff B., Sanz-Maroto A., van Zeijl R. J., Vivanco F., Alvarez-Llamas G. and McDonnell L. A. (2014) 30mum spatial resolution protein MALDI MSI: in-depth comparison of five sample preparation protocols applied to human healthy and atherosclerotic arteries. J. Proteomics. 108, 465-468.
Masyuko R., Lanni E., Sweedler J. V. and Bohn P. W. (2013) Correlated imaging - a grand challenge in chemical analysis. Analyst 138, 1924-1939.
McDonnell L. A. and Heeren R. M. A. (2007) Imaging mass spectrometry. Mass Spectrom. Rev. 26, 606-643.
McDonnell L. A., Rompp A., Balluff B., Heeren R. M., Albar J. P., Andren P. E., Corthals G. L., Walch A. and Stoeckli M. (2015) Discussion point: reporting guidelines for mass spectrometry imaging. Anal. Bioanal. Chem. 407, 2035-2045.
McDonnell L. A., Angel P. M., Lou S. and Drake R. R. (2017) Mass spectrometry imaging in cancer research: future perspectives. Adv. Cancer Res. 134, 283-290.
Meding S., Martin K., Gustafsson O. J., Eddes J. S., Hack S., Oehler M. K. and Hoffmann P. (2013) Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues. J. Proteome Res. 12, 308-315.
Michno W., Kaya I., Nystrom S., Guerard L., Nilsson K. P. R., Hammarstrom P., Blennow K., Zetterberg H. and Hanrieder J. (2018) Multimodal chemical imaging of amyloid plaque polymorphism reveals Abeta aggregation dependent anionic lipid accumulations and metabolism. Anal. Chem. 90, 8130-8138.
Monroe E. B., Annangudi S. R., Hatcher N. G., Gutstein H. B., Rubakhin S. S. and Sweedler J. V. (2008) SIMS and MALDI MS imaging of the spinal cord. Proteomics 8, 3746-3754.
Muller L., Baldwin K., Barbacci D. C. et al. (2017) Laser desorption/ionization mass spectrometric imaging of endogenous lipids from rat brain tissue implanted with silver nanoparticles. J. Am. Soc. Mass Spectrom. 28, 1716-1728.
Murphy R. C., Hankin J. A., Barkley R. M. and Zemski Berry K. A. (2011) MALDI imaging of lipids after matrix sublimation/deposition. Biochem. Biophys. Acta. 1811, 970-975.
Nakanishi T., Ohtsu I., Furuta M., Ando E. and Nishimura O. (2005) Direct MS/MS analysis of proteins blotted on membranes by a matrix-assisted laser desorption/ionization-quadrupole ion trap-time-of-flight tandem mass spectrometer. J. Proteome Res. 4, 743-747.
Nilsson A., Goodwin R. J., Shariatgorji M., Vallianatou T., Webborn P. J. and Andren P. E. (2015) Mass spectrometry imaging in drug development. Anal. Chem. 87, 1437-1455.
Norris J. L. and Caprioli R. M. (2013) Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113, 2309-2342.
Norris J. L., Cornett D. S., Mobley J. A., Andersson M., Seeley E. H., Chaurand P. and Caprioli R. M. (2007) Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int. J. Mass Spectrom. 260, 212-221.
Northen T. R., Yanes O., Northen M. T., Marrinucci D., Uritboonthai W., Apon J., Golledge S. L., Nordstrom A. and Siuzdak G. (2007) Clathrate nanostructures for mass spectrometry. Nature 449, 1033-1036.
Parry R. M., Galhena A. S., Gamage C. M., Bennett R. V., Wang M. D. and Fernández F. M. (2013) OmniSpect: an open matlab-based tool for visualization and analysis of matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry images. J. Am. Soc. Mass Spectrom. 24, 646-649.
Paschke C., Leisner A., Hester A., Maass K., Guenther S., Bouschen W. and Spengler B. (2013) Mirion-a software package for automatic processing of mass spectrometric images. J. Am. Soc. Mass Spectrom. 24, 1296-1306.
Pierson J., Svenningsson P., Caprioli R. M. and Andren P. E. (2005) Increased levels of ubiquitin in the 6-OHDA-lesioned striatum of rats. J. Proteome Res. 4, 223-226.
Pietrowska M., Gawin M., Polanska J. and Widlak P. (2016) Tissue fixed with formalin and processed without paraffin embedding is suitable for imaging of both peptides and lipids by MALDI-IMS. Proteomics 16, 1670-1677.
Piqueras Solsona S., Maeder M., Tauler R. and de Juan A. (2017) A new matching image preprocessing for image data fusion. Chemometr. Intell. Lab. Syst. 164, 32-42.
Prentice B. M., Ryan D. J., Van de Plas R., Caprioli R. M. and Spraggins J. M. (2018) Enhanced ion transmission efficiency up to m/z 24000 for MALDI protein imaging mass spectrometry. Anal. Chem. 90, 5090-5099.
Prideaux B. and Stoeckli M. (2012) Mass spectrometry imaging for drug distribution studies. J. Proteomics. 75, 4999-5013.
Puolitaival S. M., Burnum K. E., Cornett D. S. and Caprioli R. M. (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J. Am. Soc. Mass Spectrom. 19, 882-886.
Race A. M., Palmer A. D., Dexter A., Steven R. T., Styles I. B. and Bunch J. (2016) SpectralAnalysis: software for the masses. Anal. Chem. 88, 9451-9458.
Ràfols P., Torres S., Ramírez N., del Castillo E., Yanes O., Brezmes J. and Correig X. (2017) rMSI: an R package for MS imaging data handling and visualization. Bioinformatics 33, 2427-2428.
Rausch M. and Stoeckli M. (2000) Biomap, https://ms-imaging.org/wp/biomap/.
van Remoortere A., van Zeijl R. J., van den Oever N. et al. (2010) MALDI imaging and profiling MS of higher mass proteins from tissue. J. Am. Soc. Mass Spectrom. 21, 1922-1929.
Robichaud G., Garrard K. P., Barry J. A. and Muddiman D. C. (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24, 718-721.
Rompp A., Guenther S., Schober Y., Schulz O., Takats Z., Kummer W. and Spengler B. (2010) Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew. Chem. Int. Ed. Engl. 49, 3834-3838.
Rubakhin S. S., Greenough W. T. and Sweedler J. V. (2003) Spatial profiling with MALDI MS: distribution of neuropeptides within single neurons. Anal. Chem. 75, 5374-5380.
Rübel O., Greiner A., Cholia S., Louie K., Bethel E. W., Northen T. R. and Bowen B. P. (2013) OpenMSI: a high-performance web-based platform for mass spectrometry imaging. Anal. Chem. 85, 10354-10361.
Russo R. E., Mao X., Gonzalez J. J., Zorba V. and Yoo J. (2013) Laser ablation in analytical chemistry. Anal. Chem. 85, 6162-6177.
Schmid T., Opilik L., Blum C. and Zenobi R. (2013) Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. Angew. Chem. Int. Ed. Engl. 52, 5940-5954.
Schmidt H. D., Anderson S. M. and Pierce R. C. (2006) Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core, of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat. Eur. J. Neuorsci. 23, 219-228.
Schwamborn K. and Caprioli R. M. (2010a) MALDI imaging mass spectrometry - painting molecular pictures. Mol. Oncol. 4, 529-538.
Schwamborn K. and Caprioli R. M. (2010b) Molecular imaging by mass spectrometry-looking beyond classical histology. Nat. Rev. Cancer 10, 639-646.
Schwamborn K., Kriegsmann M. and Weichert W. (2017) MALDI imaging mass spectrometry - from bench to bedside. Biochem. Biophys. Acta. 1865, 776-783.
Schwartz S. A., Reyzer M. L. and Caprioli R. M. (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J. Mass Spectrom. 38, 699-708.
Schwartz M., Meyer B., Wirnitzer B. and Hopf C. (2015) Standardized processing of MALDI imaging raw data for enhancement of weak analyte signals in mouse models of gastric cancer and Alzheimer's disease. Anal. Bioanal. Chem. 407, 2255-2264.
Seeley E. H. and Caprioli R. M. (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc. Natl Acad. Sci. USA 105, 18126-18131.
Seeley E. H., Oppenheimer S. R., Mi D., Chaurand P. and Caprioli R. M. (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J. Am. Soc. Mass Spectrom. 19, 1069-1077.
Shariatgorji M., Kallback P., Gustavsson L., Schintu N., Svenningsson P., Goodwin R. J. A. and Andren P. E. (2012) Controlled-pH tissue cleanup protocol for signal enhancement of small molecule drugs analyzed by MALDI-MS imaging. Anal. Chem. 84, 4603-4607.
Shariatgorji M., Nilsson A., Goodwin R. J. et al. (2014) Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 84, 697-707.
Shimma S., Sugiura Y., Hayasaka T., Zaima N., Matsumoto M. and Setou M. (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal. Chem. 80, 878-885.
Simmons D. (2008) Improved MALDI-MS imaging performance using continuous laser rastering. Appl. Biosyst. Tech. Note. 1-5.
Skold K., Svensson M., Kaplan A., Bjorkesten L., Astrom J. and Andren P. E. (2002) A neuroproteomic approach to targeting neuropeptides in the brain. Proteomics 2, 447-454.
Skold K., Svensson M., Nilsson A., Zhang X. Q., Nydahl K., Caprioli R. M., Svenningsson P. and Andren P. E. (2006) Decreased striatal levels of PEP-19 following MPTP lesion in the mouse. J. Proteome Res. 5, 262-269.
Smith B. R. and Gambhir S. S. (2017) Nanomaterials for in vivo imaging. Chem. Rev. 117, 901-986.
Spengler B. and Hubert M. (2002) Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J. Am. Soc. Mass Spectrom. 13, 735-748.
Spengler B., Hubert M.and Kaufmann R. (1994) MALDI ion imaging and biological ion imaging with a new scanning UV-laser microprobe. In: Proccedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics, pp. 1041. Chicago, Illinois.
Spraggins J. M. and Caprioli R. M. (2011) High-speed MALDI-TOF imaging mass spectrometry: rapid ion image acquisition and considerations for next generation instrumentation. J. Am. Soc. Mass Spectrom. 22, 1022-1031.
Spraggins J. M., Rizzo D. G., Moore J. L., Rose K. L., Hammer N. D., Skaar E. P. and Caprioli R. M. (2015) MALDI FTICR IMS of intact proteins: using mass accuracy to link protein images with proteomics data. J. Am. Soc. Mass Spectrom. 26, 974-985.
Stauber J., Lemaire R., Franck J., Bonnel D., Croix D., Day R., Wisztorski M., Fournier I. and Salzet M. (2008) MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J. Proteome Res. 7, 969-978.
Stauber J., MacAleese L., Franck J. et al. (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 338-347.
Stoeckli M., Staab D., Staufenbiel M., Wiederhold K. H. and Signor L. (2002) Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal. Biochem. 311, 33-39.
Stoeckli M., Staab D., Wetzel M. and Brechbuehl M. (2014) iMatrixSpray: a free and open source sample preparation device for mass spectrometric imaging. Chimia 68, 146-149.
Strupat K., Karas M. and Hillenkamp F. (1991) 2,5-dihydroxybenzoic acid: a new matrix for laser desorption-ionization mass spectrometry. Int. J. Mass Spectrom. 111, 89-102.
Svensson M., Skold K., Svenningsson P. and Andren P. E. (2003) Peptidomics-based discovery of novel neuropeptides. J. Proteome Res. 2, 213-219.
Svensson M., Skold K., Nilsson A., Falth M., Svenningsson P. and Andren P. E. (2007) Neuropeptidomics: expanding proteomics downwards. Biochem. Soc. Trans. 35, 588-593.
Taban I. M., Altelaar A. F., van der Burgt Y. E., McDonnell L. A., Heeren R. M., Fuchser J. and Baykut G. (2007) Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 18, 145-151.
Takats Z., Wiseman J. M., Gologan B. and Cooks R. G. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471-473.
Tanaka K., Waki H., Ido S., Akita S. and Yoshida Y. (1988) Protein and polymer analysis up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151-153.
Tarolli J. G., Jackson L. M. and Winograd N. (2014) Improving secondary ion mass spectrometry image quality with image fusion. J. Am. Soc. Mass Spectrom. 25, 2154-2162.
Taylor J. P., Hardy J. and Fischbeck K. H. (2002) Toxic proteins in neurodegenerative disease. Science 296, 1991-1995.
Thomas A., Charbonneau J. L., Fournaise E. and Chaurand P. (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal. Chem. 84, 2048-2054.
Ungerstedt U. (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107.
Urban C., Buck A., Siveke J. T., Lordick F., Luber B., Walch A. and Aichler M. (2018) PAXgene fixation enables comprehensive metabolomic and proteomic analyses of tissue specimens by MALDI MSI. Biochem. Biophys. Acta. 1862, 51-60.
Uys J. D., Grey A. C., Wiggins A., Schwacke J. H., Schey K. L. and Kalivas P. W. (2010) Matrix-assisted laser desorption/ionization tissue profiling of secretoneurin in the nucleus accumbens shell from cocaine-sensitized rats. J. Mass Spectrom. 45, 97-103.
Van de Plas R., Yang J., Spraggins J. and Caprioli R. M. (2015) Fusion of mass spectrometry and microscopy: a multi-modality paradigm for molecular tissue mapping. Nat. Methods 12, 366-372.
Vaysse P. M., Heeren R. M. A., Porta T. and Balluff B. (2017) Mass spectrometry imaging for clinical research - latest developments, applications, and current limitations. Analyst 142, 2690-2712.
Vogel A. and Venugopalan V. (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577-644.
Walch A., Rauser S., Deininger S. O. and Hofler H. (2008) MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem. Cell Biol. 130, 421-434.
Walker J. M., Moises H. C., Coy D. H., Baldrighi G. and Akil H. (1982) Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science 218, 1136-1138.
Wang H. Y., Liu C. B. and Wu H. W. (2011) A simple desalting method for direct MALDI mass spectrometry profiling of tissue lipids. J. Lipid Res. 52, 840-849.
Wenzel R. J., Matter U., Schultheis L. and Zenobi R. (2005) Analysis of megadalton ions using cryodetection MALDI time-of-flight mass spectrometry. Anal. Chem. 77, 4329-4337.
Wiegelmann M., Dreisewerd K. and Soltwisch J. (2016) Influence of the laser spot size, focal beam profile, and tissue type on the lipid signals obtained by MALDI-MS imaging in oversampling mode. J. Am. Soc. Mass Spectrom. 27, 1952-1964.
Xu D., Omura T., Masaki N. et al. (2016) Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury. Sci. Rep. 6, 26427.
Yang J. and Caprioli R. M. (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal. Chem. 83, 5728-5734.
Ye H., Hui L., Kellersberger K. and Li L. (2013) Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 24, 134-147.
Zavalin A., Yang J., Hayden K., Vestal M. and Caprioli R. M. (2015) Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal. Bioanal. Chem. 407, 2337-2342.

Auteurs

Wojciech Michno (W)

Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Patrick M Wehrli (PM)

Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.

Kaj Blennow (K)

Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.

Henrik Zetterberg (H)

Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.
Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.
UK Dementia Research Institute at UCL, London, UK.

Jörg Hanrieder (J)

Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.
Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK.
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH