Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling.
Journal
Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology
ISSN: 1740-634X
Titre abrégé: Neuropsychopharmacology
Pays: England
ID NLM: 8904907
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
20
02
2018
accepted:
01
07
2018
revised:
16
05
2018
pubmed:
29
7
2018
medline:
12
2
2019
entrez:
29
7
2018
Statut:
ppublish
Résumé
Astrocytes are ubiquitous CNS cells that support tissue homeostasis through ion buffering, neurotransmitter recycling, and regulation of CNS vasculature. Yet, despite the essential functional roles they fill, very little is known about the physiology of astrocytes in the ventral midbrain, a region that houses dopamine-releasing neurons and is critical for reward learning and motivated behaviors. Here, using a combination of whole-transcriptome sequencing, histology, slice electrophysiology, and calcium imaging, we performed the first functional and molecular profiling of ventral midbrain astrocytes and observed numerous differences between these cells and their telencephalic counterparts, both in their gene expression profile and in their physiological properties. Ventral midbrain astrocytes have very low membrane resistance and inward-rectifying potassium channel-mediated current, and are extensively coupled to surrounding oligodendrocytes through gap junctions. They exhibit calcium responses to glutamate but are relatively insensitive to norepinephrine. In addition, their calcium activity can be dynamically modulated by dopamine D2 receptor signaling. Taken together, these data indicate that ventral midbrain astrocytes are physiologically distinct from astrocytes in cortex and hippocampus. This work provides new insights into the extent of functional astrocyte heterogeneity within the adult brain and establishes the foundation for examining the impact of regional astrocyte differences on dopamine neuron function and susceptibility to degeneration.
Identifiants
pubmed: 30054584
doi: 10.1038/s41386-018-0151-4
pii: 10.1038/s41386-018-0151-4
pmc: PMC6300565
doi:
Substances chimiques
Receptors, Dopamine D2
0
Glutamic Acid
3KX376GY7L
Calcium
SY7Q814VUP
Norepinephrine
X4W3ENH1CV
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
344-355Subventions
Organisme : NIAMS NIH HHS
ID : P30 AR070254
Pays : United States
Références
Wise RA. Dopamine, learning and motivation. Nat Rev Neurosci. 2004;5:483–94. https://doi.org/10.1038/nrn1406
doi: 10.1038/nrn1406
pubmed: 15152198
Chong TT-J, Husain M. Chapter 17 - The role of dopamine in the pathophysiology and treatment of apathy. In: Studer B, Knecht S, editors. Progress in brain research, vol. 229. Amsterdam: Elsevier; 2016. p. 389–426.
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci. 2016;17:524–32. https://doi.org/10.1038/nrn.2016.57
doi: 10.1038/nrn.2016.57
pubmed: 27256556
pmcid: 5166560
Mackin LA. Understanding Parkinson’s disease: detection and early disease management. Lippincotts Prim Care Pract. 2000;4:595–607.
pubmed: 11933373
Zhou QY, Palmiter RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995;83:1197–209.
doi: 10.1016/0092-8674(95)90145-0
pubmed: 8548806
Datta I, Ganapathy K, Razdan R, Bhonde R. Location and number of astrocytes determine dopaminergic neuron survival and function under 6-OHDA stress mediated through differential BDNF release. Mol Neurobiol. 2018;55:5505–25.
doi: 10.1007/s12035-017-0767-0
pubmed: 28965325
Shao W, Zhang S, Tang M, Zhang X, Zhou Z, Yin Y, et al. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature. 2013;494:90–94. https://doi.org/10.1038/nature11748
doi: 10.1038/nature11748
pubmed: 23242137
Bosson A, Boisseau S, Buisson A, Savasta M, Albrieux M. Disruption of dopaminergic transmission remodels tripartite synapse morphology and astrocytic calcium activity within substantia nigra pars reticulata. Glia. 2015;63:673–83. https://doi.org/10.1002/glia.22777
doi: 10.1002/glia.22777
pubmed: 25511180
Cooper AJ, Jeitner TM. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules. 2016;6:pii: E16.
doi: 10.3390/biom6020016
Eroglu C, Barres BA. Regulation of synaptic connectivity by glia. Nature. 2010;468:223. https://doi.org/10.1038/nature09612
doi: 10.1038/nature09612
pubmed: 21068831
pmcid: 4431554
Nortley R, Attwell D. Control of brain energy supply by astrocytes. Curr Opin Neurobiol. 2017;47(Supplement C):80–85. https://doi.org/10.1016/j.conb.2017.09.012
doi: 10.1016/j.conb.2017.09.012
pubmed: 29054039
Barker AJ, Ullian EM. Astrocytes and synaptic plasticity. Neuroscientist. 2010;16:40–50. https://doi.org/10.1177/1073858409339215
doi: 10.1177/1073858409339215
pubmed: 20236948
Bellot-Saez A, Kékesi O, Morley JW, Buskila Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci Biobehav Rev. 2017;77:87–97. https://doi.org/10.1016/j.neubiorev.2017.03.002
doi: 10.1016/j.neubiorev.2017.03.002
pubmed: 28279812
Zhang Y, Barres BA. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol. 2010;20:588–94. https://doi.org/10.1016/j.conb.2010.06.005
doi: 10.1016/j.conb.2010.06.005
pubmed: 20655735
Haim LB, Rowitch DH. Functional diversity of astrocytes in neural circuit regulation. Nat Rev Neurosci. 2017;18:31–41.
doi: 10.1038/nrn.2016.159
pubmed: 27904142
Molofsky AV, Krenick R, Ullian E, Tsai H, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012;26:891–907. https://doi.org/10.1101/gad.188326.112
doi: 10.1101/gad.188326.112
pubmed: 22549954
pmcid: 3347787
Biase LMD, Schuebel KE, Fusfeld ZH, Jair K, Hawes IA, Cimbro R, et al. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron. 2017;95:341–.e6. https://doi.org/10.1016/j.neuron.2017.06.020
doi: 10.1016/j.neuron.2017.06.020
pubmed: 28689984
pmcid: 5754189
Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience. 2011;198:95–111. https://doi.org/10.1016/j.neuroscience.2011.08.023
doi: 10.1016/j.neuroscience.2011.08.023
pubmed: 21872647
Xin W, Edwards N, Bonci A. VTA dopamine neuron plasticity - the unusual suspects. Eur J Neurosci. 2016;44:2975–83. https://doi.org/10.1111/ejn.13425
doi: 10.1111/ejn.13425
pubmed: 27711998
Rubio FJ, Li X, Liu Q-R, Cimbro R, Hope BT. Fluorescence activated cell sorting (FACS) and gene expression analysis of Fos-expressing neurons from fresh and frozen rat brain tissue. J Vis Exp. 2016;114:e54358.
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40. https://doi.org/10.1093/bioinformatics/btp616
doi: 10.1093/bioinformatics/btp616
pubmed: 19910308
Theodosis DT, Poulain DA, Oliet SHR. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev. 2008;88:983–1008. https://doi.org/10.1152/physrev.00036.2007
doi: 10.1152/physrev.00036.2007
pubmed: 18626065
Gordon GRJ, Howarth C, MacVicar BA. Bidirectional control of blood flow by astrocytes: a role for tissue oxygen and other metabolic factors. In: Roach R, Hackett P, Wagner P, editors. Hypoxia. Advances in experimental medicine and biology, vol. 903. Boston: Springer; 2016. p. 209-19.
Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci. 2008;28:264–78. https://doi.org/10.1523/JNEUROSCI.4178-07.2008
doi: 10.1523/JNEUROSCI.4178-07.2008
pubmed: 18171944
pmcid: 6671143
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47. https://doi.org/10.1523/JNEUROSCI.1860-14.2014
doi: 10.1523/JNEUROSCI.1860-14.2014
pubmed: 25186741
pmcid: 4152602
Olsen ML, Sontheimer H. Functional implications for Kir4.1 channels in glial biology: from K+buffering to cell differentiation. J Neurochem. 2008;107:589–601. https://doi.org/10.1111/j.1471-4159.2008.05615.x
doi: 10.1111/j.1471-4159.2008.05615.x
pubmed: 18691387
pmcid: 2581639
Bazzigaluppi P, Weisspapir I, Stefanovic B, Leybaert L, Carlen PL. Astrocytic gap junction blockade markedly increases extracellular potassium without causing seizures in the mouse neocortex. Neurobiol Dis. 2017;101(Supplement C):1–7. https://doi.org/10.1016/j.nbd.2016.12.017
doi: 10.1016/j.nbd.2016.12.017
pubmed: 28007587
Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J Neurosci. 2007;27:11354–65. https://doi.org/10.1523/JNEUROSCI.0723-07.2007
doi: 10.1523/JNEUROSCI.0723-07.2007
pubmed: 17942730
pmcid: 6673037
Seifert G, Hüttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, et al. Analysis of astroglial K+channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci. 2009;29:7474–88. https://doi.org/10.1523/JNEUROSCI.3790-08.2009
doi: 10.1523/JNEUROSCI.3790-08.2009
pubmed: 19515915
pmcid: 6665420
Giaume C, Venance L. Intercellular calcium signaling and gap junctional communication in astrocytes. Glia. 1998;24:50–64.
doi: 10.1002/(SICI)1098-1136(199809)24:1<50::AID-GLIA6>3.0.CO;2-4
pubmed: 9700489
Du Y, Ma B, Kiyoshi CM, Alford CC, Wang W, Zhou M. Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes. J Neurophysiol. 2015;113:3744–50. https://doi.org/10.1152/jn.00206.2015
doi: 10.1152/jn.00206.2015
pubmed: 25810481
pmcid: 4468969
Griemsmann S, Höft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, et al. Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex (New Y, NY). 2015;25:3420–33. https://doi.org/10.1093/cercor/bhu157
doi: 10.1093/cercor/bhu157
Magnotti LM, Goodenough DA, Paul DL. Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia. 2011;59:1064–74. https://doi.org/10.1002/glia.21179
doi: 10.1002/glia.21179
pubmed: 21538560
pmcid: 3094483
Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK. Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci. 2007;27:13949–57. https://doi.org/10.1523/JNEUROSCI.3395-07.2007
doi: 10.1523/JNEUROSCI.3395-07.2007
pubmed: 18094232
pmcid: 6673504
Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res. 2012;1487(Supplement C):88–98. https://doi.org/10.1016/j.brainres.2012.06.045
doi: 10.1016/j.brainres.2012.06.045
pubmed: 22789907
Kirmani BF, Jacobowitz DM, Namboodiri MAA. Developmental increase of aspartoacylase in oligodendrocytes parallels CNS myelination. Dev Brain Res. 2003;140:105–15. https://doi.org/10.1016/S0165-3806(02)00592-8
doi: 10.1016/S0165-3806(02)00592-8
Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron. 2014;81:728–39. https://doi.org/10.1016/j.neuron.2014.02.007
doi: 10.1016/j.neuron.2014.02.007
pubmed: 24559669
pmcid: 4107238
Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300. https://doi.org/10.1038/nature12354
doi: 10.1038/nature12354
pubmed: 23868258
pmcid: 3777791
Agarwal A, Wu P-H, Hughes EG, Fukaya M, Tischfield MA, Langseth AJ, et al. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron. 2017;93:587–605.e7. https://doi.org/10.1016/j.neuron.2016.12.034
doi: 10.1016/j.neuron.2016.12.034
pubmed: 28132831
pmcid: 5308886
Duffy S, MacVicar BA. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J Neurosci. 1995;15:5535–50.
doi: 10.1523/JNEUROSCI.15-08-05535.1995
pubmed: 7643199
pmcid: 6577630
Paukert M, Agarwal A, Cha J, Doze VA, Kang JU, Bergles DE. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron. 2014;82:1263–70. https://doi.org/10.1016/j.neuron.2014.04.038
doi: 10.1016/j.neuron.2014.04.038
pubmed: 24945771
pmcid: 4080721
Ford CP, Gantz SC, Phillips PEM, Williams JT. Control of extracellular dopamine at dendrite and axon terminals. J Neurosci. 2010;30:6975–83. https://doi.org/10.1523/JNEUROSCI.1020-10.2010
doi: 10.1523/JNEUROSCI.1020-10.2010
pubmed: 20484639
pmcid: 2883253
Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13–22. https://doi.org/10.1016/j.neuroscience.2014.01.025
doi: 10.1016/j.neuroscience.2014.01.025
pubmed: 24463000
Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS. An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA. 2001;98:1964–9. https://doi.org/10.1073/pnas.98.4.1964
doi: 10.1073/pnas.98.4.1964
pubmed: 11172059
pmcid: 29365
Qiu J, Yan Z, Tao K, Li Y, Li Y, Li J, et al. Sinomenine activates astrocytic dopamine D2 receptors and alleviates neuroinflammatory injury via the CRYAB/STAT3 pathway after ischemic stroke in mice. J Neuroinflamm. 2016;13:263 https://doi.org/10.1186/s12974-016-0739-8
doi: 10.1186/s12974-016-0739-8
Avila-Luna A, Verduzco-Mendoza A, Bueno-Nava A. Effects of dopamine D1 receptor activation and blockade on dopamine and noradrenaline levels in the rat brain. Neurosci Lett. 2016;612(Supplement C):116–20. https://doi.org/10.1016/j.neulet.2015.11.040
doi: 10.1016/j.neulet.2015.11.040
pubmed: 26639424
Molofsky AV, Kelley KW, Tsai H-H, Redmond SA, Chang SM, Madireddy L, et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature. 2014;509:189–94. https://doi.org/10.1038/nature13161
doi: 10.1038/nature13161
pubmed: 24776795
pmcid: 4057936
Chai H, Diaz-Castro B, Shigetomi E, Monte E, Octeau JC, Yu X, et al. Neural circuit-specialized astrocytes: transcriptomic, proteomic, morphological, and functional evidence. Neuron. 2017;95:531–.e9. https://doi.org/10.1016/j.neuron.2017.06.029
doi: 10.1016/j.neuron.2017.06.029
pubmed: 28712653
pmcid: 5811312
Morel L, Chiang MSR, Higashimori H, Shoneye T, Iyer LK, Yelick J, et al. Molecular and functional properties of regional astrocytes in the adult brain. J Neurosci. 2017;37:8706–17. https://doi.org/10.1523/JNEUROSCI.3956-16.2017
doi: 10.1523/JNEUROSCI.3956-16.2017
pubmed: 28821665
pmcid: 5588463
Gatzke-Kopp LM. The canary in the coalmine: the sensitivity of mesolimbic dopamine to environmental adversity during development. Neurosci Biobehav Rev. 2011;35:794–803. https://doi.org/10.1016/j.neubiorev.2010.09.013
doi: 10.1016/j.neubiorev.2010.09.013
pubmed: 20888857
Kaur K, Gill JS, Bansal PK, Deshmukh R. Neuroinflammation - a major cause for striatal dopaminergic degeneration in Parkinson’s disease. J Neurol Sci. 2017;381(Supplement C):308–14. https://doi.org/10.1016/j.jns.2017.08.3251
doi: 10.1016/j.jns.2017.08.3251
pubmed: 28991704
Oliet SHR, Bonfardin VDJ. Morphological plasticity of the rat supraoptic nucleus – cellular consequences. Eur J Neurosci. 2010;32:1989–94. https://doi.org/10.1111/j.1460-9568.2010.07514.x
doi: 10.1111/j.1460-9568.2010.07514.x
pubmed: 21143653
Wild AR, Bollands M, Morris PG, Jones S. Mechanisms regulating spill‐over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons. Eur J Neurosci. 2015;42:2633–43. https://doi.org/10.1111/ejn.13075
doi: 10.1111/ejn.13075
pubmed: 26370007
pmcid: 4832385
Scofield MD, Li H, Siemsen B, Healey KL, Tran PK, Woronoff N, et al. Cocaine self-administration and extinction leads to reduced GFAP expression and morphometric features of astrocytes in the nucleus accumbens core. Biol Psychiatry. 2016;80:207–15. https://doi.org/10.1016/j.biopsych.2015.12.022
doi: 10.1016/j.biopsych.2015.12.022
pubmed: 26946381
Rangroo Thrane V, Thrane AS, Wang F, Cotrina ML, Smith NA, Chen M, et al. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat Med. 2013;19:1643–8. https://doi.org/10.1038/nm.3400
doi: 10.1038/nm.3400
pubmed: 24240184
Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci. 2014;17:694–703. https://doi.org/10.1038/nn.3691
doi: 10.1038/nn.3691
pubmed: 24686787
pmcid: 4064471
Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–7. https://doi.org/10.1038/nature25752
doi: 10.1038/nature25752
pubmed: 29446379
Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron. 2017;95:1365–.e5. https://doi.org/10.1016/j.neuron.2017.08.022 .
doi: 10.1016/j.neuron.2017.08.022
pubmed: 28867552
pmcid: 5617118
Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science. 2008;322:1551–5. https://doi.org/10.1126/science.1164022
doi: 10.1126/science.1164022
pubmed: 19056987
Ma B, Buckalew R, Du Y, Kiyoshi CM, Alford CC, Wang W, et al. Gap junction coupling confers isopotentiality on astrocyte syncytium: electrical coupling of astrocytes in a syncytium. Glia. 2016;64:214–26. https://doi.org/10.1002/glia.22924
doi: 10.1002/glia.22924
pubmed: 26435164
Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci. 2006;26:5438–47. https://doi.org/10.1523/JNEUROSCI.0037-06.2006
doi: 10.1523/JNEUROSCI.0037-06.2006
pubmed: 16707796
pmcid: 6675300
Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature. 2012;485:517–21. https://doi.org/10.1038/nature11007
doi: 10.1038/nature11007
pubmed: 22622581
pmcid: 3613737
Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487:443–8. https://doi.org/10.1038/nature11314
doi: 10.1038/nature11314
pubmed: 22801498
pmcid: 3408792
Meyer N, Richter N, Fan Z, Siemonsmeier G, Pivneva T, Jordan P, et al. Oligodendrocytes in the mouse Corpus callosum maintain axonal function by delivery of glucose. Cell Rep. 2018;22:2383–94. https://doi.org/10.1016/j.celrep.2018.02.022
doi: 10.1016/j.celrep.2018.02.022
pubmed: 29490274
Amano S, Kegelmeyer D, Hong SL. Rethinking energy in parkinsonian motor symptoms: a potential role for neural metabolic deficits. Front Syst Neurosci. 2015;8:242.
doi: 10.3389/fnsys.2014.00242
pubmed: 25610377
pmcid: 4285053
Budde T, Meuth S, Pape H-C. Calcium-dependent inactivation of neuronal calcium channels. Nat Rev Neurosci. 2002;3:873–83. https://doi.org/10.1038/nrn959
doi: 10.1038/nrn959
pubmed: 12415295
Budygin EA, Oleson EB, Lee YB, Blume LC, Bruno MJ, Howlett AC, et al. Acute depletion of D2 receptors from the rat substantia nigra alters dopamine kinetics in the dorsal striatum and drug responsivity. Front Behav Neurosci. 2017;10:248.
doi: 10.3389/fnbeh.2016.00248
pubmed: 28154530
pmcid: 5243821
Calipari ES, Sun H, Eldeeb K, Luessen DJ, Feng X, Howlett AC, et al. Amphetamine self-administration attenuates dopamine D2 autoreceptor function. Neuropsychopharmacology. 2014;39:1833–42. https://doi.org/10.1038/npp.2014.30
doi: 10.1038/npp.2014.30
pubmed: 24513972
pmcid: 4059891
Reguilón MD, Montagud-Romero S, Ferrer-Pérez C, Roger-Sánchez C, Aguilar MA, Miñarro J, et al. Dopamine D2 receptors mediate the increase in reinstatement of the conditioned rewarding effects of cocaine induced by acute social defeat. Eur J Pharmacol. 2017;799:48–57. https://doi.org/10.1016/j.ejphar.2017.01.039
doi: 10.1016/j.ejphar.2017.01.039
pubmed: 28132915
Volkow ND, Wang G-J, Fowler JS, Thanos PPK, Logan J, Gatley SJ, et al. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse. 2002;46:79–82. https://doi.org/10.1002/syn.10137
doi: 10.1002/syn.10137
pubmed: 12211085
Srinivasan R, Lu T-Y, Chai H, Xu J, Huang BS, Golshani P, et al. New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron. 2016;92:1181–95. https://doi.org/10.1016/j.neuron.2016.11.030
doi: 10.1016/j.neuron.2016.11.030
pubmed: 27939582
pmcid: 5403514
Brasko C, Hawkins V, De La Rocha IC, Butt AM. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct. 2017;222:41–59. https://doi.org/10.1007/s00429-016-1199-8
doi: 10.1007/s00429-016-1199-8
pubmed: 26879293