The control of a virtual automatic car based on multiple patterns of motor imagery BCI.
Brain-computer interface
Multiple degrees of freedom control
Multiple patterns of motor imagery
Virtual automatic car
Journal
Medical & biological engineering & computing
ISSN: 1741-0444
Titre abrégé: Med Biol Eng Comput
Pays: United States
ID NLM: 7704869
Informations de publication
Date de publication:
Jan 2019
Jan 2019
Historique:
received:
16
05
2017
accepted:
01
08
2018
pubmed:
14
8
2018
medline:
19
3
2019
entrez:
14
8
2018
Statut:
ppublish
Résumé
Multiple degrees of freedom (DOF) commands are required for a brain-actuated virtual automatic car, which makes the brain-computer interface (BCI) control strategy a big challenge. In order to solve the challenging issue, a mixed model of BCI combining P300 potentials and motor imagery had been realized in our previous study. However, compared with single model BCI, more training procedures are needed for the mixed model and more mental workload for users to bear. In the present study, we propose a multiple patterns of motor imagery (MPMI) BCI method, which is based on the traditional two patterns of motor imagery. Our motor imagery BCI approach had been extended to multiple patterns: right-hand motor imagery, left-hand motor imagery, foot motor imagery, and both hands motor imagery resulting in turning right, turning left, acceleration, and deceleration for a virtual automatic car control. Ten healthy subjects participated in online experiments, the experimental results not only show the efficiency of our proposed MPMI-BCI strategy but also indicate that those users can control the virtual automatic car spontaneously and efficiently without any other visual attention. Furthermore, the metric of path length optimality ratio (1.23) is very encouraging and the time optimality ratio (1.28) is especially remarkable. Graphical Abstract The paradigm of multiple patterns of motor imagery detection and the relevant topographies of CSP weights for different MI patterns.
Identifiants
pubmed: 30101383
doi: 10.1007/s11517-018-1883-3
pii: 10.1007/s11517-018-1883-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
299-309Subventions
Organisme : Innovation Projects for Science supported by Department of Education of Guangdong Province
ID : 2016KTSCX141
Organisme : Science Foundation for Young Teachers of Wuyi University
ID : 2018td01
Organisme : Technology Development Project of Guangdong Province
ID : 2017A0101034
Références
IEEE Trans Biomed Eng. 2004 Jun;51(6):993-1002
pubmed: 15188870
Neuroimage. 2006 May 15;31(1):153-9
pubmed: 16443377
Phys Med Rehabil Clin N Am. 2008 Aug;19(3):591-605, x-xi
pubmed: 18625418
J Neurophysiol. 2009 Mar;101(3):1679-89
pubmed: 19109453
J Neural Eng. 2009 Aug;6(4):046002
pubmed: 19494422
IEEE Trans Neural Syst Rehabil Eng. 2010 Aug;18(4):409-14
pubmed: 20144923
J Neural Eng. 2010 Apr;7(2):26007
pubmed: 20332550
IEEE Trans Neural Syst Rehabil Eng. 2010 Dec;18(6):599-609
pubmed: 20805058
IEEE Trans Biomed Eng. 2011 Feb;58(2):355-62
pubmed: 20889426
IEEE Trans Biomed Eng. 2011 Jun;58(6):1781-8
pubmed: 21335304
J Neural Eng. 2011 Apr;8(2):025028
pubmed: 21436511
IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):379-88
pubmed: 22498703
IEEE Trans Neural Syst Rehabil Eng. 2012 Sep;20(5):720-9
pubmed: 22692936
Med Eng Phys. 2013 Aug;35(8):1155-64
pubmed: 23339894
J Neural Eng. 2013 Aug;10(4):046003
pubmed: 23735712
Electroencephalogr Clin Neurophysiol. 1987 Apr;66(4):376-82
pubmed: 2435517
Cogn Neurodyn. 2014 Oct;8(5):399-409
pubmed: 25206933
JACC Cardiovasc Interv. 2016 Jan 25;9(2):126-34
pubmed: 26793954
J Neural Eng. 2016 Dec;13(6):066021
pubmed: 27841159
Med Biol Eng Comput. 2017 Oct;55(10):1809-1818
pubmed: 28238175