Dual-Layer Strengthened Collaborative Topic Regression Modeling for Predicting Drug Sensitivity.


Journal

IEEE/ACM transactions on computational biology and bioinformatics
ISSN: 1557-9964
Titre abrégé: IEEE/ACM Trans Comput Biol Bioinform
Pays: United States
ID NLM: 101196755

Informations de publication

Date de publication:
Historique:
pubmed: 15 8 2018
medline: 2 3 2021
entrez: 15 8 2018
Statut: ppublish

Résumé

An effective way to facilitate the development of modern oncology precision medicine is the systematical analysis of the known drug sensitivities that have emerged in recent years. Meanwhile, the screening of drug response in cancer cell lines provides an estimable genomic and pharmacological data towards high accuracy prediction. Existing works primarily utilize genomic or functional genomic features to classify or regress the drug response. Here in this work, by the migration and extension of the conventional merchandise recommendation methods, we introduce an innovation model on accurate drug sensitivity prediction by using dual-layer strengthened collaborative topic regression (DS-CTR), which incorporates not only the graphic model to jointly learn drugs and cell lines feature from pharmacogenomics data but also drug and cell line similarity network model to strengthen the correlation of the prediction results. Using Genomics of Drug Sensitivity in Cancer project (GDSC) as benchmark datasets, the 5-fold cross-validation experiment demonstrates that DS-CTR model significantly improves drug response prediction performance compared with four categories of state-of-the-art algorithms as for both Receiver Operator Curve (ROC) and the Area Under Receiver Operator Curve (AUC). By uncovering the unknown cell-drug associations with advanced literature evidences, our novel model DS-CTR is validated and supported. The model also provides the possibility to make the discovery of new anti-cancer therapeutics in the preclinical trials cheaper and faster.

Identifiants

pubmed: 30106738
doi: 10.1109/TCBB.2018.2864739
doi:

Substances chimiques

Antineoplastic Agents 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

587-598

Auteurs

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH