Ketogenic diet, a potentially valuable therapeutic option for the management of refractory epilepsy in classical neonatal nonketotic hyperglycinemia: a case report.


Journal

European journal of clinical nutrition
ISSN: 1476-5640
Titre abrégé: Eur J Clin Nutr
Pays: England
ID NLM: 8804070

Informations de publication

Date de publication:
Jun 2019
Historique:
received: 03 03 2018
accepted: 27 07 2018
revised: 02 07 2018
pubmed: 16 8 2018
medline: 23 7 2020
entrez: 16 8 2018
Statut: ppublish

Résumé

Nonketotic hyperglycinemia (NKH) is a devastating inborn error of glycine metabolism caused by deficient activity of the glycine cleavage enzyme. Classically, patients present with lethargy, hypotonia, myoclonic jerks, transient respiratory depression in the first week of life and often progress to death. Surviving infants have profound psychomotor retardation, refractory epilepsy and poor quality of life. Currently, no effective therapeutic avenues exist for severe NKH. Ketogenic diet (KD) has been trialled only in a small group of patients with neonatal NKH and early myoclonic encephalopathy, in whom significant improvements in seizure control were reported. We describe an infant with classical neonatal NKH who presented on the third day of life with hypotonia, poor feeding, respiratory insufficiency resulting in ventilatory support and seizures with burst-suppression pattern on electroencephalogram (EEG). KD initiated at age 6 months for intractable seizures, lead to a dramatic decrease in seizure frequency, EEG improvements, normalisation of plasma glycine levels, reduced spasticity and improved quality of life. KD may be a valuable treatment modality for refractory seizure control in classical NKH.

Identifiants

pubmed: 30108280
doi: 10.1038/s41430-018-0286-8
pii: 10.1038/s41430-018-0286-8
doi:

Types de publication

Case Reports Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

961-965

Références

Van Hove J, Coughlin C II, Scharer G. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews
Ohya Y, Ochi N, Mizutani N, Hayakawa C, Watanabe K. Nonketotic hyperglycinemia: Treatment with NMDA antagonist and consideration of neuropathogenesis. Pediatr Neurol. 1991;7:65–68.
doi: 10.1016/0887-8994(91)90110-7
Hennermann JB, Berger JM, Grieben U, Scharer G, Van Hove JL. Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis. 2012;35:253–61.
doi: 10.1007/s10545-011-9398-1
Swanson MA, Coughlin CR, Scharer GH, Szerlong HJ, Bjoraker KJ, Spector EB, et al. Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann Neurol. 2015;78:606–18.
doi: 10.1002/ana.24485
Jaeken J, de Koning T, van Hove J. Disorders of GABA, glycine, serine and proline. In: Blau N, Duran M, Blaskovics ME, Gibson KM, editors. Physician’s Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd ed. Berlin: Springer; 2002. p. 123–40.
Cusmai R, Martinelli D, Moavero R, Dionisi Vici C, Vigevano F, Castana C, et al. Ketogenic diet in early myoclonic encephalopathy due to non ketotic hyperglycinemia. Eur J Pediatr Neurol. 2012;16:509–13.
doi: 10.1016/j.ejpn.2011.12.015
Bzduch V, Behulova D, Kolnikova M, Payerova J, Fabriciova K. Ketogenic diet in nonketotic hyperglycinemia. J Inherit Metab Dis. 2010;33(S1):S31.
Nickerson SL, Balasubramaniam S, Dryland PA, Love JM, Kava MP, Love DR, et al. Two novel GLDC mutations in a neonate with nonketotic hyperglycinemia. J Pediatr Genet. 2016;5:174–80.
doi: 10.1055/s-0036-1584358
Nylen K, Likhodii S, Burnham WM. The ketogenic diet: proposed mechanisms of action. Neurotherapeutics. 2009;6:402–5.
doi: 10.1016/j.nurt.2009.01.021
Bough K. Energy metabolism as part of the anti-convulsant mechanism of the ketogenic diet. Epilepsia. 2009;49:91–93.
doi: 10.1111/j.1528-1167.2008.01846.x
Busanello ENB, Moura AP, Viegas CM, Zanatta A, da Costa Ferreira G, Schuck PF, et al. Neurochemical evidence that glycine induces bioenergetical dysfunction. Neurochem Int. 2010;56:948–54.
doi: 10.1016/j.neuint.2010.04.002
Seminotti B, Knebel LA, Fernandes GC, Amaral AU, da Rosa MS, Eichler P, et al. Glycine intrastriatal administration induces lipid and protein oxidative damage and alters the enzymatic antioxidant defences in rat brain. Life Sci. 2011;89:276–81.
doi: 10.1016/j.lfs.2011.06.013
Samoilova M, Weisspapir M, Abdelmalik P, Velumian AA, Carlen PL. Chronic in vitro ketosis is neuroprotective but not anti-convulsant. J Neurochem. 2010;113:826–35.
doi: 10.1111/j.1471-4159.2010.06645.x

Auteurs

Maina P Kava (MP)

Department of Neurology, Princess Margaret Hospital for Children, Perth, WA, Australia. maina.kava@health.wa.gov.au.
School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia. maina.kava@health.wa.gov.au.
Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital, Perth, WA, Australia. maina.kava@health.wa.gov.au.

Annie Robertson (A)

Dietetics Department, Princess Margaret Hospital, Perth, WA, Australia.

Lawrence Greed (L)

PathWest Laboratory Medicine WA, Princess Margaret Hospital, Perth, WA, Australia.

Shanti Balasubramaniam (S)

School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia.
Metabolic Unit, Department of Rheumatology and Metabolic Medicine, Princess Margaret Hospital, Perth, WA, Australia.
Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, NSW, Australia.
Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH