Causal inference in coupled human and natural systems.
bioeconomics
marine protected areas
quasiexperiment
social-ecological systems
spatial dynamics
Journal
Proceedings of the National Academy of Sciences of the United States of America
ISSN: 1091-6490
Titre abrégé: Proc Natl Acad Sci U S A
Pays: United States
ID NLM: 7505876
Informations de publication
Date de publication:
19 03 2019
19 03 2019
Historique:
pubmed:
22
8
2018
medline:
15
5
2019
entrez:
22
8
2018
Statut:
ppublish
Résumé
Coupled human and natural systems (CHANS) are complex, dynamic, interconnected systems with feedback across social and environmental dimensions. This feedback leads to formidable challenges for causal inference. Two significant challenges involve assumptions about excludability and the absence of interference. These two assumptions have been largely unexplored in the CHANS literature, but when either is violated, causal inferences from observable data are difficult to interpret. To explore their plausibility, structural knowledge of the system is requisite, as is an explicit recognition that most causal variables in CHANS affect a coupled pairing of environmental and human elements. In a large CHANS literature that evaluates marine protected areas, nearly 200 studies attempt to make causal claims, but few address the excludability assumption. To examine the relevance of interference in CHANS, we develop a stylized simulation of a marine CHANS with shocks that can represent policy interventions, ecological disturbances, and technological disasters. Human and capital mobility in CHANS is both a cause of interference, which biases inferences about causal effects, and a moderator of the causal effects themselves. No perfect solutions exist for satisfying excludability and interference assumptions in CHANS. To elucidate causal relationships in CHANS, multiple approaches will be needed for a given causal question, with the aim of identifying sources of bias in each approach and then triangulating on credible inferences. Within CHANS research, and sustainability science more generally, the path to accumulating an evidence base on causal relationships requires skills and knowledge from many disciplines and effective academic-practitioner collaborations.
Identifiants
pubmed: 30126992
pii: 1805563115
doi: 10.1073/pnas.1805563115
pmc: PMC6431173
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
5311-5318Déclaration de conflit d'intérêts
The authors declare no conflict of interest.
Références
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1512-1517
pubmed: 28137850
Proc Natl Acad Sci U S A. 2008 Oct 21;105(42):16089-94
pubmed: 18854414
Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4332-7
pubmed: 24567397
Ambio. 2007 Dec;36(8):639-49
pubmed: 18240679
Science. 2018 Feb 23;359(6378):904-908
pubmed: 29472481
Science. 2007 Sep 14;317(5844):1513-6
pubmed: 17872436
Philos Trans R Soc Lond B Biol Sci. 2015 Nov 5;370(1681):
pubmed: 26460123
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6306-11
pubmed: 21444809
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1305-12
pubmed: 19179280
Nature. 2014 Feb 13;506(7487):216-20
pubmed: 24499817
Science. 2012 Oct 26;338(6106):496-500
pubmed: 22997134
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18300-5
pubmed: 20133732
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7333-8
pubmed: 21502517
Philos Trans R Soc Lond B Biol Sci. 2015 Nov 5;370(1681):
pubmed: 26460122
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):13913-8
pubmed: 21873177
Nature. 2018 Jan 25;553(7689):399-401
pubmed: 29368721
Science. 2009 Jul 24;325(5939):419-22
pubmed: 19628857
Ecol Appl. 2015 Jul;25(5):1187-96
pubmed: 26485948
Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8080-5
pubmed: 12815106