On doubly robust estimation of the hazard difference.


Journal

Biometrics
ISSN: 1541-0420
Titre abrégé: Biometrics
Pays: United States
ID NLM: 0370625

Informations de publication

Date de publication:
03 2019
Historique:
received: 01 06 2017
revised: 01 05 2018
accepted: 01 05 2018
pubmed: 23 8 2018
medline: 18 12 2019
entrez: 23 8 2018
Statut: ppublish

Résumé

The estimation of conditional treatment effects in an observational study with a survival outcome typically involves fitting a hazards regression model adjusted for a high-dimensional covariate. Standard estimation of the treatment effect is then not entirely satisfactory, as the misspecification of the effect of this covariate may induce a large bias. Such misspecification is a particular concern when inferring the hazard difference, because it is difficult to postulate additive hazards models that guarantee non-negative hazards over the entire observed covariate range. We therefore consider a novel class of semiparametric additive hazards models which leave the effects of covariates unspecified. The efficient score under this model is derived. We then propose two different estimation approaches for the hazard difference (and hence also the relative chance of survival), both of which yield estimators that are doubly robust. The approaches are illustrated using simulation studies and data on right heart catheterization and mortality from the SUPPORT study.

Identifiants

pubmed: 30133696
doi: 10.1111/biom.12943
pmc: PMC7735191
mid: NIHMS1001906
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

100-109

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI104459
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI127271
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA222147
Pays : United States

Informations de copyright

© 2018, The International Biometric Society.

Références

Epidemiology. 2010 Jan;21(1):13-5
pubmed: 20010207
Biometrika. 2010 Mar;97(1):171-180
pubmed: 23049119
J Am Stat Assoc. 2012;107(499):
pubmed: 24347749
Biometrika. 2014 Mar;101(1):237-244
pubmed: 28669998
Epidemiology. 2000 Sep;11(5):550-60
pubmed: 10955408
JAMA. 1996 Sep 18;276(11):889-97
pubmed: 8782638
Stat Sin. 2018 Jul;28(3):1539-1560
pubmed: 30135619
Epidemiology. 2017 Nov;28(6):771-779
pubmed: 28832358

Auteurs

Oliver Dukes (O)

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, Ghent 9000, Belgium.

Torben Martinussen (T)

Department of Biostatistics, University of Copenhagen, Øster Farimagsgade 5B, 1014 Copenhagen K, Denmark.

Eric J Tchetgen Tchetgen (EJ)

Department of Statistics, The Wharton School, University of Pennsylvania, 3730 Walnut Street, Pennsylvania 19104, U.S.A.

Stijn Vansteelandt (S)

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281 S9, Ghent 9000, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH