Differential secretome profiling of a swine tracheal cell line infected with mycoplasmas of the swine respiratory tract.


Journal

Journal of proteomics
ISSN: 1876-7737
Titre abrégé: J Proteomics
Pays: Netherlands
ID NLM: 101475056

Informations de publication

Date de publication:
10 02 2019
Historique:
received: 28 05 2018
revised: 06 08 2018
accepted: 29 08 2018
pubmed: 4 9 2018
medline: 27 2 2020
entrez: 4 9 2018
Statut: ppublish

Résumé

Mycoplasma hyopneumoniae and Mycoplasma flocculare are genetically similar. However, M. hyopneumoniae causes porcine enzootic pneumonia, while M. flocculare is a commensal bacterium. M. hyopneumoniae and M. flocculare do not penetrate their host cells, and secreted proteins are important for bacterium-host interplay. Thus, the secretomes of a swine trachea cell line (NPTr) infected with M. hyopneumoniae 7448 (a pathogenic strain), M. hyopneumoniae J (a non-pathogenic strain) and M. flocculare were compared to shed light in bacterium-host interactions. Medium from the cultures was collected, and secreted proteins were identified by a LC-MS/MS. Overall numbers of identified host and bacterial proteins were, respectively, 488 and 58, for NPTr/M. hyopneumoniae 7448; 371 and 67, for NPTr/M. hyopneumoniae J; and 203 and 81, for NPTr/M. flocculare. The swine cells revealed different secretion profiles in response to the infection with each M. hyopneumoniae strain or with M. flocculare. DAMPs and extracellular proteasome proteins, secreted in response to cell injury and death, were secreted by NPTr cells infected with M. hyopneumoniae 7448. All three mycoplasmas secreted virulence factors during NPTr infection, but M. hyopneumoniae 7448 secreted higher number of adhesins and hypothetical proteins, that may be related with pathogenicity. SIGNIFICANCE: The enzootic pneumonia caused by mycoplasmas of swine respiratory tract has economic loss consequences in pig industry due to antibiotic costs and pig weight loss. However, some genetically similar mycoplasmas are pathogenic while others, such as Mycoplasma hyopneumoniae and Mycoplasma flocculare, are non-pathogenic. Here, we conducted an infection assay between swine cells and pathogenic and non-pathogenic mycoplasmas to decipher secreted proteins during host-pathogen interaction. Mycoplasma response to cell infection was also observed. Our study provided new insights on secretion profile of swine cells in response to the infection with pathogenic and non-pathogenic mycoplasmas. It was possible to observe that pathogenic M. hyopneumoniae 7448 secreted known virulence factors and swine cells responded by inducing cell death. Otherwise, M. hyopneumoniae J and M. flocculare, non-pathogenic mycoplasmas, secreted a different profile of virulence factors in response to swine cells. Consequently, swine cells altered their secretome profile, but the changes were not sufficient to cause disease.

Identifiants

pubmed: 30176387
pii: S1874-3919(18)30332-4
doi: 10.1016/j.jprot.2018.08.018
pii:
doi:

Substances chimiques

Bacterial Proteins 0
Proteome 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

147-159

Informations de copyright

Copyright © 2018 Elsevier B.V. All rights reserved.

Auteurs

Fernanda Munhoz Dos Anjos Leal Zimmer (FMDA)

Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil.

Gabriela Prado Paludo (GP)

Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil.

Hercules Moura (H)

Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States.

John R Barr (JR)

Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States.

Henrique Bunselmeyer Ferreira (HB)

Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500 Porto Alegre, Rio Grande do Sul, Brazil. Electronic address: henrique@cbiot.ufrgs.br.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH