Geostatistical prediction of water lead levels in Flint, Michigan: A multivariate approach.
Cokriging
Cross-validation
Cross-variogram
Inverse square distance weighting
Voluntary sampling
Journal
The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500
Informations de publication
Date de publication:
10 Jan 2019
10 Jan 2019
Historique:
received:
26
06
2018
revised:
30
07
2018
accepted:
31
07
2018
pubmed:
6
9
2018
medline:
6
9
2018
entrez:
6
9
2018
Statut:
ppublish
Résumé
Despite several environmental crises, little research has been conducted on citywide geospatial modeling of water lead levels (WLL) in public distribution systems. This paper presents the first application of multivariate geostatistics to lead in drinking water within a distribution system, specifically in Flint, Michigan. One of the key features of the Flint data is their collection through two different sampling initiatives: (i) voluntary or homeowner-driven sampling whereby concerned citizens decided to acquire a testing kit and conduct sampling on their own (10,717 sites), and (ii) State-administered sampling where data were collected bi-weekly at 809 selected sites after training of residents by technical teams (sentinel sites). These two datasets were first averaged over the 41-week sampling period and each tax parcel to attenuate sampling fluctuations and create a set of 420 tax parcels sampled by both protocols. Both variables displayed a correlation of 0.62 while their direct and cross-semivariograms showed substantial nugget effect and a long range of 7.5 km. WLLs recorded at sentinel sites and deemed more reliable by city officials were then interpolated using cokriging to account for the more densely sampled voluntary data and information on service line composition (lead, other, or unknown) available for each of 51,045 residential tax parcels. Cross-validation demonstrated the greater prediction accuracy of the multivariate geostatistical approach relative to kriging and inverse square distance weighting interpolation using only sentinel data. This general procedure is applicable to other cities with aging infrastructure where lead in drinking water is a concern.
Identifiants
pubmed: 30180337
pii: S0048-9697(18)32954-1
doi: 10.1016/j.scitotenv.2018.07.459
pmc: PMC6168368
mid: NIHMS1503343
pii:
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1294-1304Subventions
Organisme : NCI NIH HHS
ID : R44 CA192520
Pays : United States
Organisme : NIEHS NIH HHS
ID : R44 ES022113
Pays : United States
Informations de copyright
Copyright © 2018 Elsevier B.V. All rights reserved.