Brown adipose tissue in prepubertal children: associations with sex, birthweight, and metabolic profile.


Journal

International journal of obesity (2005)
ISSN: 1476-5497
Titre abrégé: Int J Obes (Lond)
Pays: England
ID NLM: 101256108

Informations de publication

Date de publication:
02 2019
Historique:
received: 20 10 2017
accepted: 22 07 2018
revised: 22 06 2018
pubmed: 7 9 2018
medline: 4 1 2020
entrez: 7 9 2018
Statut: ppublish

Résumé

Individuals born small-for-gestational age (SGA), especially those who experience postnatal catch-up growth, are at increased risk for developing endocrine-metabolic abnormalities before puberty. In adults, brown adipose tissue (BAT) has been associated with protection against metabolic disorders, such as obesity, type 2 diabetes, and dyslipidaemia. Here, we assessed for the first time whether BAT activation differs between prepubertal children born SGA or appropriate-for-gestational age (AGA). The study population consisted of 86 prepubertal children [41 AGA and 45 SGA; age (mean ± SEM), 8.5 ± 0.1 years], recruited into two prospective longitudinal studies assessing endocrine-metabolic status and body composition in infancy and childhood. The temperature at the supraclavicular region (SCR) before and after a cold stimulus was measured by infrared thermal imaging, and the area of thermally active SCR (increase after cold challenge, ΔArea No differences in BAT activation index, as judged by ΔArea Prepubertal AGA girls had significantly greater BAT activation index as compared to AGA boys; this difference was not observed in SGA subjects. Higher BAT activation associated with a lower amount of visceral fat and with a favorable metabolic profile. Long-term follow-up is needed to determine whether those differences relate to pubertal timing, and to the development of obesity and metabolic disorders.

Sections du résumé

BACKGROUND/OBJECTIVES
Individuals born small-for-gestational age (SGA), especially those who experience postnatal catch-up growth, are at increased risk for developing endocrine-metabolic abnormalities before puberty. In adults, brown adipose tissue (BAT) has been associated with protection against metabolic disorders, such as obesity, type 2 diabetes, and dyslipidaemia. Here, we assessed for the first time whether BAT activation differs between prepubertal children born SGA or appropriate-for-gestational age (AGA).
SUBJECTS/METHODS
The study population consisted of 86 prepubertal children [41 AGA and 45 SGA; age (mean ± SEM), 8.5 ± 0.1 years], recruited into two prospective longitudinal studies assessing endocrine-metabolic status and body composition in infancy and childhood. The temperature at the supraclavicular region (SCR) before and after a cold stimulus was measured by infrared thermal imaging, and the area of thermally active SCR (increase after cold challenge, ΔArea
RESULTS
No differences in BAT activation index, as judged by ΔArea
CONCLUSIONS
Prepubertal AGA girls had significantly greater BAT activation index as compared to AGA boys; this difference was not observed in SGA subjects. Higher BAT activation associated with a lower amount of visceral fat and with a favorable metabolic profile. Long-term follow-up is needed to determine whether those differences relate to pubertal timing, and to the development of obesity and metabolic disorders.

Identifiants

pubmed: 30185921
doi: 10.1038/s41366-018-0198-7
pii: 10.1038/s41366-018-0198-7
doi:

Substances chimiques

Blood Glucose 0
Insulin 0
Lipids 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

384-391

Références

Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced foetal growth. Diabetologia. 1993;36:62–67.
doi: 10.1007/BF00399095
Ibáñez L, Ong K, Dunger D, de Zegher F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational age children. J Clin Endocrinol Metab. 2006;91:2153–8.
doi: 10.1210/jc.2005-2778
Ibáñez L, Suárez L, Lopez-Bermejo A, Díaz M, Valls C, de Zegher F. Early development of visceral fat excess after spontaneous catch-up growth in children with low birth weight. J Clin Endocrinol Metab. 2008;93:2079–83.
doi: 10.1210/jc.2007-2850
Sebastiani G, Díaz M, Bassols J, Aragonés G, López-Bermejo A, de Zegher F, et al. The sequence of prenatal growth restraint and post-natal catch-up growth leads to a thicker intima-media and more pre-peritoneal and hepatic fat by age 3-6 years. Pediatr Obes. 2016;11:251–7.
doi: 10.1111/ijpo.12053
Ibáñez L, López-Bermejo A, Díaz M, Marcos MV, Casano P, de Zegher F. Abdominal fat partitioning and high-molecular-weight adiponectin in short children born small for gestational age. J Clin Endocrinol Metab. 2009;94:1049–52.
doi: 10.1210/jc.2008-2176
Malpique R, Bassols J, López-Bermejo A, Diaz M, Villarroya F, Pavia J, et al. Liver volume and hepatic adiposity in childhood: relations to body growth and visceral fat. Int J Obes (Lond). 2018;42:65–71.
doi: 10.1038/ijo.2017.198
Cypess AM, Lehman S, Williams G, Rodman D, Goldfine AB, Kuo FC, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.
doi: 10.1056/NEJMoa0810780
Rothwell NJ, Stock MJ. Effects of age on diet induced thermogenesis and brown adipose tissue metabolism in the rat. Int J Obes. 1983;7:583–9.
pubmed: 6686217
Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63:4089–99.
doi: 10.2337/db14-0746
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.
doi: 10.1038/nm.2297
Enerback S. Human adipose tissue. Cell Metab. 2010;11:248–52.
doi: 10.1016/j.cmet.2010.03.008
Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.
doi: 10.1056/NEJMoa0808949
Drubach LA, Palmer EL 3rd, Connolly LP, Baker A, Zurakowski D, et al. Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr. 2011;159:939–44.
doi: 10.1016/j.jpeds.2011.06.028
Green AL, Bagci U, Hussein S, Kelly PV, Muzaffar R, Neuschwander-Tetri BA, et al. Brown adipose tissue detected by PET/CT imaging is associated with less central obesity. Nucl Med Commun. 2017;38:629–35.
doi: 10.1097/MNM.0000000000000691
Wijers SL, Saris WH, van Marken Lichtenbelt WD. Cold-induced adaptive thermogenesis in lean and obese. Obes (Silver Spring). 2010;18:1092–9.
doi: 10.1038/oby.2010.74
Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. Brown adipose tissue in morbidly obese subjects. PLoS ONE. 2011;6:e17247.
doi: 10.1371/journal.pone.0017247
Gilsanz V, Smith ML, Goodarzian F, Kim M, Wren TAL, Hu HH. Changes in brown adipose tissue in boys and girls during childhood and puberty. J Pediatr. 2012;169:604–9.
doi: 10.1016/j.jpeds.2011.09.035
Robinson L, Ojha S, Symonds ME, Budge H. Body mass index as a determinant of brown adipose tissue function in healthy children. J Pediatr. 2014;164:318–22.
doi: 10.1016/j.jpeds.2013.10.005
Symonds ME, Henderson K, Elvidge L, Bosman C, Sharkey, Perkins AC, et al. Thermal imaging to assess age-related changes of skin-temperature within supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. 2012;161:892–8.
doi: 10.1016/j.jpeds.2012.04.056
Law JM, Morris DE, Engbeaya CI, Salem V, Coello C, Robinson L, et al. Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans. J Nucl Med. 2018;59:516–22.
doi: 10.2967/jnumed.117.190546
Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320:967–71.
doi: 10.1136/bmj.320.7240.967
Jang C, Jalapu S, Thuzar M, Law PW, Susanne Jeavons S, Barclay JL, et al. Infrared thermography in the detection of brown adipose tissue in humans. Physiol Rep. 2014;2:e12167.
doi: 10.14814/phy2.12167
Ferrández-Longas A, Mayayo E, Labarta JI, Bagué L, Puga B, Rueda C, et al. Estudio longitudinal de crecimiento y desarrollo. Centro Andrea Prader. Zaragoza 1980-2002. In: Garcia- Dihinx A, Romo A, Ferrandez-Longas A (eds). Patrones de crecimiento y desarrollo en España. Ergon: Madrid, Spain; 2004. pp. 61–115.
Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51:170–9.
doi: 10.1136/adc.51.3.170
Ibáñez L, Lopez-Bermejo A, Díaz M, Suárez L, de Zegher F. Low-birth weight children develop lower sex hormone binding globulin and higher dehydroepiandrosterone sulfate levels and aggravate their visceral adiposity and hypoadiponectinemia between six and eight years of age. J Clin Endocrinol Metab.2009;94:3696–3699.
doi: 10.1210/jc.2009-0789
Gilsanz V, Chung SA, Jackson H, Dorey FJ, Hu HH. Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr. 2011;158:722–6.
doi: 10.1016/j.jpeds.2010.11.020
Ponrartana S, Patricia C, Aggabao PC, Chavez TA, Dharmavaram NL, Gilsanz V. Changes in brown adipose tissue and muscle development during infancy. J Pediatr. 2016;173:116–21.
doi: 10.1016/j.jpeds.2016.03.002
Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31.
doi: 10.2337/db09-0530
Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med. 2003;44:170–6.
pubmed: 12571205
Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes. 2010;59:1789–93.
doi: 10.2337/db10-0004
Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.
doi: 10.1056/NEJMoa1502214
Dumortier O, Roger E, Pisani DF, Casamento V, Gautier N, Lebrun P, et al. Age-dependent control of energy homeostasis by brown adipose tissue in progeny subjected to maternal diet-induced fetal programming. Diabetes. 2017;66:627–39.
doi: 10.2337/db16-0956
Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.
doi: 10.1038/nm.2297
Lee P, Bova R, Schofield L, Bryant W, Dieckmann W, Slattery A, et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab. 2016;23:602–9.
doi: 10.1016/j.cmet.2016.02.007
Villarroya F, Gavaldà-Navarro A, Peyrou M, Villarroya J, Giralt M. The lives and times of brown adipokines. Trends Endocrinol Metab. 2017;28:855–67.
doi: 10.1016/j.tem.2017.10.005
Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, et al. The brown fat–enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nat Med. 2014;20:1436–43.
doi: 10.1038/nm.3713
Ibáñez L, Ong KK, López-Bermejo A, Dunger DB, de Zegher F. Hyperinsulinaemic androgen excess in adolescent girls. Nat Rev Endocrinol. 2014;10:499–508.
doi: 10.1038/nrendo.2014.58
de Zegher F, Reinehr T, Malpique R, Darendeliler F, López-Bermejo A, Ibáñez L. Reduced prenatal weight gain and/or augmented postnatal weight gain precedes polycystic ovary syndrome in adolescent girls. Obes (Silver Spring). 2017;25:1486–9.
doi: 10.1002/oby.21935
Yuan X, Hu T, Zhao H, Huang Y, Ye R, Lin J, et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc Natl Acad Sci USA. 2016;113:2708–13.
doi: 10.1073/pnas.1523236113
Hu T, Yuan X, Ye R, Zhou H, Lin J, Zhang C, et al. Brown adipose tissue activation by rutin ameliorates polycystic ovary syndrome in rat. J Nutr Biochem. 2017;47:21–28.
doi: 10.1016/j.jnutbio.2017.04.012
Ibáñez L, López-Bermejo A, Díaz M, de Zegher F. Catch-up growth in girls born small for gestational age precedes childhood progression to high adiposity. Fertil Steril. 2011;96:220–3.
doi: 10.1016/j.fertnstert.2011.03.107
Persson I, Ahlsson F, Ewald U, Tuvemo T, Qingyuan M, von Rosen D, et al. Influence of perinatal factors on the onset of puberty in boys and girls: implications for interpretation of link with risk of long term diseases. Am J Epidemiol. 1999;150:747–55.
doi: 10.1093/oxfordjournals.aje.a010077
Solorzano CMB, McCartney CR. Obesity and the pubertal transition in girls and boys. Reproduction. 2010;140:399–410.
doi: 10.1530/REP-10-0119
Day FR, Elks CE, Murray A, Ong KK, Perry JRB. Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci Rep. 2015;5:11208.
doi: 10.1038/srep11208
Trnovská J, Šilhavý J, Kuda O, Landa V, Zídek V, Mlejnek P, et al. Salsalate ameliorates metabolic disturbances by reducing inflammation in spontaneously hypertensive rats expressing human C-reactive protein and by activating brown adipose tissue in nontransgenic controls. PLoS ONE. 2017;12:e0179063.
doi: 10.1371/journal.pone.0179063
Lee J, Yoon K, Ryu S, Chang Y, Kim HR. High-normal levels of hs-CRP predict the development of non-alcoholic fatty liver in healthy men. PLoS ONE. 2017;12:e0172666.
doi: 10.1371/journal.pone.0172666
Bian H, Hakkarainen A, Zhou Y, Lundbom N, Olkkonen VM, Yki-Järvinen H. Impact of non-alcoholic fatty liver disease on liver volume in humans. Hepatol Res. 2015;45:210–9.
doi: 10.1111/hepr.12338
Van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, et al. Visceral fat: a key mediator of steatohepatitis in metabolic liver disease. Hepatology. 2008;48:449–57.
doi: 10.1002/hep.22350
Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96:192–9.
doi: 10.1210/jc.2010-0989
Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond). 2014;38:812–7.
doi: 10.1038/ijo.2013.206
Robinson LJ, Law JM, Symonds ME, Budge H. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females. Exp Physiol. 2016;101:549–57.
doi: 10.1113/EP085642
Scotney H, Symonds ME, Law J, Budge H, Sharkey D, Manolopoulos KN. Glucocorticoids modulate human brown adipose tissue thermogenesis in vivo. Metabolism. 2017;70:125–32.
doi: 10.1016/j.metabol.2017.01.024

Auteurs

Rita Malpique (R)

Endocrinology, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, 08950, Esplugues, Barcelona, Spain.
Network Biomedical Research Center of Diabetes and Associated Metabolic Disorders (CIBERDEM), Health Institute Carlos III, 28029, Madrid, Spain.

José Miguel Gallego-Escuredo (JM)

Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, 08028, Barcelona, Spain.

Giorgia Sebastiani (G)

Endocrinology, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, 08950, Esplugues, Barcelona, Spain.
Network Biomedical Research Center of Diabetes and Associated Metabolic Disorders (CIBERDEM), Health Institute Carlos III, 28029, Madrid, Spain.

Joan Villarroya (J)

Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, 08028, Barcelona, Spain.
Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain.

Abel López-Bermejo (A)

Hospital Dr. Josep Trueta & Girona Institute for Biomedical Research, 17007, Girona, Spain.

Francis de Zegher (F)

Department of Development & Regeneration, University of Leuven, 3000, Leuven, Belgium.

Francesc Villarroya (F)

Biochemistry and Molecular Biomedicine Department, Biomedicine Institute, University of Barcelona, 08028, Barcelona, Spain.
Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029, Madrid, Spain.

Lourdes Ibáñez (L)

Endocrinology, Pediatric Research Institute Sant Joan de Déu, University of Barcelona, 08950, Esplugues, Barcelona, Spain. libanez@hsjdbcn.org.
Network Biomedical Research Center of Diabetes and Associated Metabolic Disorders (CIBERDEM), Health Institute Carlos III, 28029, Madrid, Spain. libanez@hsjdbcn.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH