Retrospective time estimation following damage to the prefrontal cortex.


Journal

Journal of neuropsychology
ISSN: 1748-6653
Titre abrégé: J Neuropsychol
Pays: England
ID NLM: 101468753

Informations de publication

Date de publication:
03 2020
Historique:
received: 08 12 2017
revised: 11 07 2018
pubmed: 8 9 2018
medline: 16 6 2021
entrez: 8 9 2018
Statut: ppublish

Résumé

Time estimation in patients with prefrontal cortex (PFC) damage is often inaccurate. The relationship between PFC and estimation of short time intervals has been examined. However, it remains unclear whether PFC damage affects estimation of longer time intervals. Here, we investigated the ability of patients and healthy subjects to verbally estimate a period of 30 min, using a method easily applied in clinical settings. In 99 patients with brain damage, we compared under and normal ranges of time in patients with PFC damage or damage to other brain areas with the chi-squared test. Subsequently, we conducted a discriminant analysis and a multiple linear regression analysis to identify specific brain areas affecting time estimation. We observed a significantly larger number of patients who overestimated 30 min in the group with bilateral PFC damage compared to patients with damage to other regions. Discriminant analysis revealed that damage of right lateral PFC and left medial PFC contributed to discrimination between the normal range and overestimation groups. Multiple linear regression analysis indicated that right lateral PFC damage strongly affected overestimation of a 30-min interval. Neuropsychological test results revealed lower general cognitive function scores and orientation scores in overestimation group. The length of estimated time and the score of delayed word recall were negatively correlated. We propose that these may require encoding, maintenance, and updating of memory and are indirectly related to contextual memory. We discuss hypotheses on contextual memory segmentation and reconstruction to clarify the mechanism of impaired time overestimation in PFC-damaged patients.

Identifiants

pubmed: 30192412
doi: 10.1111/jnp.12171
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

135-153

Informations de copyright

© 2018 The British Psychological Society.

Références

Baddeley, A., Logie, R., Bressi, S., Sala, S. D., & Spinnler, H. (1986). Dementia and working memory. The Quarterly Journal of Experimental Psychology, 38, 603-618. https://doi.org/10.1080/14640748608401616
Berlin, H. A., Rolls, E. T., & Kischka, U. (2004). Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain, 127(Pt 5), 1108-1126. https://doi.org/10.1093/brain/awh135
Binkofski, F., & Block, R. A. (1996). Accelerated time after left frontal cortex lesion. Neurocase, 2, 485-493. https://doi.org/10.1080/13554799608402424
Bisson, N., Tobin, S., & Grondin, S. (2012). Prospective and retrospective time estimates of children: a comparison based on ecological tasks. PLoS ONE, 7, e33049. https://doi.org/10.1371/journal.pone.0033049
Block, R. A. (1978). Remembered duration: Effects of event and sequence complexity. Memory & Cognition, 6, 320-326.
Block, R. A. (1982). Temporal judgments and contextual change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 530-544. https://doi.org/10.1037/0278-7393.8.6.530
Block, R. A. (1992). Prospective and retrospective duration judgment: The role of information processing and memory. In F. Macar, V. Pouthas & W. L. Friedman (Eds.), Time, action and cognition: Towards bridging the gap (pp. 141-152). Dordrecht, The Netherlands: Kluwer. https://doi.org/10.1007/978-94-017-3536-0
Block, R. A., & Reed, M. A. (1978). Remembered duration: Evidence for a contextual-change hypothesis. Journal of Experimental Psychology: Human Learning and Memory, 4, 656-665. https://doi.org/10.1037/0278-7393.4.6.656
Block, R. A., & Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic review. Psychonomic Bulletin & Review, 4, 184-197.
Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., … & Jagust, W. J. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130, 746-763. https://doi.org/10.1037//0096-3445.130.4.746
Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5, 49-62. https://doi.org/10.1006/nimg.1996.0247
Brody, C. D., Hernández, A., Zainos, A., & Romo, R. (2003). Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cerebral Cortex, 13, 1196-1207. https://doi.org/10.1093/cercor/bhg100
Bryden, D. W., Johnson, E. E., Tobia, S. C., Kashtelyan, V., & Roesch, M. R. (2011). Attention for learning signals in anterior cingulate cortex. Journal of Neuroscience, 31, 18266-18274. https://doi.org/10.1523/JNEUROSCI.4715-11.2011
Burgess, P. W., Dumontheil, I., & Gilbert, S. J. (2007). The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends in Cognitive Sciences, 11, 290-298. https://doi.org/10.1016/j.tics.2007.05.004
Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28, 168-186. https://doi.org/10.3758/BF03331976
Ezzyat, Y., & Davachi, L. (2014). Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron, 81, 1179-1189. https://doi.org/10.1016/j.neuron.2014.01.042
Faber, M., & Gennari, S. P. (2015). In search of lost time: Reconstructing the unfolding of events from memory. Cognition, 143, 193-202. https://doi.org/10.1016/j.cognition.2015.06.014
Folstein, M. F., Folstein, S. F., & McHugh, P. R. (1975). “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189-198. https://doi.org/10.1016/0022-3956(75)90026-6
Genovesio, A., Seitz, L. K., Tsujimoto, S., & Wise, S. P. (2016). Context-dependent duration signals in the primate prefrontal cortex. Cerebral Cortex, 26, 3345-3356. https://doi.org/10.1093/cercor/bhv156
Genovesio, A., Tsujimoto, S., Navarra, G., Falcone, R., & Wise, S. P. (2014). Autonomous encoding of irrelevant goals and outcomes by prefrontal cortex neurons. Journal of Neuroscience, 34, 1970-1978. https://doi.org/10.1523/JNEUROSCI.3228-13.2014
Gershberg, F. B., & Shimamura, A. P. (1995). Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia, 33, 1305-1333. https://doi.org/org/10.1016/0028-3932(95)00103-A
Handa, T. (1989). A neuropsychological study on the memory disturbance due to the frontal lesion. Journal of the Keio Medical Society, 66, 153-166. [in Japanese]
Harrington, D. L., & Haaland, K. Y. (1999). Neural underpinnings of temporal processing: A review of focal lesion pharmacological and functional imaging research. Reviews in the Neurosciences, 10(2), 91-116. https://doi.org/10.1515/REVNEURO.1999.10.2.91
Harrington, D. L., Haaland, K. Y., & Knight, R. T. (1998). Cortical networks underlying mechanisms of time perception. Journal of Neuroscience, 18, 1085-1095. https://doi.org/10.1523/JNEUROSCI.18-03-01085.1998
Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z., & Knight, R. T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127(Pt 3), 561-574. https://doi.org/org/10.1093/brain/awh065
Hayashi, C. (1952). On the prediction of phenomena from qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 3, 69-98.
Heaton, R. K. (1981). Wisconsin card sorting test. Odessa, FL: Psychological Assessment Resources.
Henson, R. N. A., Shallice, T., & Dolan, R. J. (1999). Right prefrontal cortex and episodic memory retrieval: A functional MRI test of the monitoring hypothesis. Brain, 122, 1367-1381. https://doi.org/10.1093/brain/122.7.1367
Imai, Y., & Hasegawa, K. (1994). The revised Hasegawa's Dementia Scale (HDS-R): Evaluation of its usefulness as a screening test for dementia. Hong Kong Journal of Psychiatry, 4, 20-24.
Jenkins, L. J., & Ranganath, C. (2010). Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. Journal of Neuroscience, 30, 15558-15565. https://doi.org/10.1523/JNEUROSCI.1337-10.2010
Jenkins, L. J., & Ranganath, C. (2016). Distinct neural mechanisms for remembering when an event occurred. Hippocampus, 26, 554-559. https://doi.org/10.1002/hipo.22571
Jones, C. R., Rosenkranz, K., Rothwell, J. C., & Jahanshahi, M. (2004). The right dorsolateral prefrontal cortex is essential in time reproduction: An investigation with repetitive transcranial magnetic stimulation. Experimental Brain Research, 158, 366-372. https://doi.org/10.1007/s00221-004-1912-3
Kinkingnéhun, S., Volle, E., Pélégrini-Issac, M., Golmard, J. L., Lehéricy, S., du Boisguéheneuc, F., … & Levy, R. (2007). A novel approach to clinical-radiological correlations: Anatomo-Clinical Overlapping Maps (AnaCOM): Method and validation. NeuroImage, 37, 1237-1249. https://doi.org/10.1016/j.neuroimage.2007.06.027
Kohs, S. C. (1923). Intelligence measurement. New York, NY: Macmillan.
Lewis, P. A., & Miall, R. C. (2006). A right hemispheric prefrontal system for cognitive time measurement. Behavioural Processes, 71, 226-234. https://doi.org/org/10.1016/j.beproc.2005.12.009
Lositsky, O., Chen, J., Toker, D., Honey, C. J., Shvartsman, M., Poppenk, J. L., … & Norman, K. A. (2016). Neural pattern change during encoding of a narrative predicts retrospective duration estimates. Elife, 5, e16070. https://doi.org/10.7554/eLife.16070
Mangels, J. A., Ivry, R. B., & Shimizu, N. (1998). Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research, 7(1), 15-39. https://doi.org/10.1016/S0926-6410(98)00005-6
Marcos, E., Tsujimoto, S., & Genovesio, A. (2016). Independent coding of absolute duration and distance magnitudes in the prefrontal cortex. Journal of Neurophysiology, 117(1), 195-203. https://doi.org/10.1152/jn.00245.2016
Meck, W. H. (1996). Neuropharmacology of timing and time perception. Cognitive Brain Research, 3, 227-242. https://doi.org/org/10.1016/0926-6410(96)00009-2
Mimura, M., Kinsbourne, M., & O'Connor, M. (2000). Time estimation by patients with frontal lesions and by Korsakoff amnesia. Journal of International Neuropsychological Society, 6, 517-528. https://doi.org/10.1017/S1355617700655017
Narayanan, N. S., Prabhakaran, V., Bunge, S. A., Christoff, K., Fine, E. M., & Gabrieli, J. D. (2005). The role of the prefrontal cortex in the maintenance of verbal working memory: An event-related FMRI analysis. Neuropsychology, 19, 223-232. https://doi.org/10.1037/0894-4105.19.2.22
Nichelli, P., Venneri, A., Molinari, M., Tavani, F., & Grafman, J. (1993). Precision and accuracy of subjective time estimation in different memory disorders. Cognitive Brain Research, 1(2), 87-93. https://doi.org/10.1016/0926-6410(93)90014-V
Noulhiane, M., Pouthhas, V., Hasboun, D., Baulac, M., & Samson, S. (2007). Role of the medial temporal lobe in time estimation in the range of minutes. NeuroReport, 18, 1035-1038. https://doi.org/10.1097/WNR.0b013e3281668be1
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/10.1016/0028-3932(71)90067-4
Onoe, H., Komori, M., Onoe, K., Takechi, H., Tsukada, H., & Watanabe, Y. (2001). Cortical networks recruited for time perception: A monkey positron emission tomography (PET) study. NeuroImage, 13(1), 37-45. https://doi.org/10.1006/nimg.2000.0670
Ornstein, R. E. (1969). On the experience of time. Harmondworth, UK: Penguin.
Perbal, S., Ehrlé, N., Samson, S., Baulac, M., & Pouthas, V. (2001). Time estimation in patients with right or left medial-temporal lobe resection. NeuroReport, 12, 939-942. https://doi.org/10.1080/13554790008402782
Perbal-Hatif, S. (2012). A neuropsychological approach to time estimation. Dialogues in Clinical Neuroscience, 14, 425-432.
Polyn, S. M., & Kahana, M. J. (2008). Memory search and the neural representation of context. Trends in Cognitive Sciences, 12(1), 24-30. https://doi.org/10.1016/j.tics.2007.10.010
Pouthas, V., George, N., Poline, J. B., Pfeuty, M., VandeMoorteele, P. F., Hugueville, L., … & Renault, B. (2005). Neural network involved in time perception: An fMRI study comparing long and short interval estimation. Human Brain Mapping, 25, 433-441. https://doi.org/10.1002/hbm.20126
Poynter, W. D., & Homa, D. (1983). Duration judgment and the experience of change. Perception & Psychophysics, 33, 548-560. https://doi.org/10.3758/BF03197664
Raven, J. C., Court, J. H., & Raven, J. (1990). Coloured progressive matrices. Manual for Raven's progressive matrices and vocabulary scales. Oxford: Oxford Psychologists Press.
Reynolds, J. R., West, R., & Braver, T. (2008). Distinct neural circuits support transient and sustained processes in prospective memory and working memory. Cerebral Cortex, 19, 1208-1221. https://doi.org/10.1093/cercor/bhn164
Richards, W. (1973). Time reproductions by H.M. Acta Psychologica, 37, 279-282. https://doi.org/10.1016/0001-6918(73)90020-6
Rugg, M. D., & Wilding, E. L. (2000). Retrieval processing and episodic memory. Trends in Cognitive Sciences, 4, 108-115. https://doi.org/10.1016/S1364-6613(00)01445-5
Sahakyan, L., & Smith, J. R. (2014). “A long time ago, in a context far, far away”: Retrospective time estimates and internal context change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(1), 86-93. https://doi.org/10.1037/a0034250
Shimamura, A. P., Janowsky, J. S., & Squire, L. R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28, 803-813. https://doi.org/org/10.1016/0028-3932(90)90004-8
Spiegel, E. A., Wycis, H. T., Orchinik, C., & Freed, H. (1956). Thalamic chronotaraxis. American Journal of Psychiatry, 113(2), 97-105. https://doi.org/10.1176/ajp.113.2.97
Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44(1), 453-495. https://doi.org/10.1146/annurev.ps.44.020193.002321
Stuss, D. T., Alexander, M. P., Palumbo, C., Buckle, L., Sayer, L., & Pogue, J. (1994). Organizational strategies with unilateral or bilateral frontal lobe injury in word learning tasks. Neuropsychology, 8, 355-373. https://doi.org/org/10.1037/0894-4105.8.3.355
Tobin, S., Bisson, N., & Grondin, S. (2010). An ecological approach to prospective and retrospective timing of long durations: A study involving gamers. PLoS ONE, 5, e9271. https://doi.org/10.1371/journal.pone.0009271
Tobin, S., & Grondin, S. (2009). Video games and the perception of very long durations by adolescents. Computers in Human Behavior, 25, 554-559. https://doi.org/10.1016/j.chb.2008.12.002
Umeda, S., Kurosaki, Y., Terasawa, Y., Kato, M., & Miyahara, Y. (2011). Deficits in prospective memory following damage to the prefrontal cortex. Neuropsychologia, 49, 2178-2184. https://doi.org/10.1016/j.neuropsychologia.2011.03.036
Vidalaki, V. N., Ho, M. Y., Bradshaw, C. M., & Szabadi, E. (1999). Interval timing performance in temporal lobe epilepsy: Difference between patients with left and right hemisphere foci. Neuropsychologia, 37, 1061-1070. https://doi.org/10.1016/S0028-3932(98)00155-9
Volle, E., Kinkingnéhun, S., Pochon, J. B., Mondon, K., Thiebaut de Schotten, M., Seassau, M., … & Levy, R. (2008). The functional architecture of the left posterior and lateral prefrontal cortex in humans. Cerebral Cortex, 18, 2460-2469. https://doi.org/10.1093/cercor/bhn010
Wechsler, D. (1987). Wechsler memory scale-revised. New York, NY: Psychological Corporation.
Wild-Wall, N., Willemssen, R., Falkenstein, M., & Beste, C. (2008). Time estimation in healthy and neurodegenerative basal ganglia disorders. Neuroscience Letters, 442(1), 34-38. https://doi.org/10.1016/j.neulet.2008.06.069
Yarmey, A. D. (2000). Retrospective duration estimations for variant and invariant events in field situations. Applied Cognitive Psychology, 14(1), 45-57. https://doi.org/10.1002/(SICI)1099-0720(200001)14:1<45:AID-ACP623>3.0.CO;2-U
Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133, 273-293. https://doi.org/10.1037/0033-2909.133.2.273
Zakay, D., & Block, R. A. (2004). Prospective and retrospective duration judgments: An executive-control perspective. Acta Neurobilogiae Experimentalis, 64, 319-328. https://doi.org/10.3758/bf03209393
Zakay, D., Tsal, Y., Moses, M., & Shahar, I. (1994). The role of segmentation in prospective and retrospective time estimation processes. Memory & Cognition, 22, 344-351. https://doi.org/10.3758/BF03200861

Auteurs

Yoshiko Kurosaki (Y)

Department of Communication Disorders, School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, Japan.

Yuri Terasawa (Y)

Department of Psychology, Keio University, Tokyo, Japan.

Yukiro Ibata (Y)

Department of Neurosurgery, Nasu Red Cross Hospital, Tochigi, Japan.

Ryusaku Hashimoto (R)

Department of Communication Disorders, School of Psychological Science, Health Sciences University of Hokkaido, Hokkaido, Japan.

Satoshi Umeda (S)

Department of Psychology, Keio University, Tokyo, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH