Data-Driven Method for Efficient Characterization of Rare Event Probabilities in Biochemical Systems.
Gillespie algorithm
Importance sampling
Rare event probability estimation
SSA
Stochastic simulation
dwSSA
Journal
Bulletin of mathematical biology
ISSN: 1522-9602
Titre abrégé: Bull Math Biol
Pays: United States
ID NLM: 0401404
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
21
01
2018
accepted:
07
09
2018
pubmed:
19
9
2018
medline:
29
8
2020
entrez:
19
9
2018
Statut:
ppublish
Résumé
As mathematical models and computational tools become more sophisticated and powerful to accurately depict system dynamics, numerical methods that were previously considered computationally impractical started being utilized for large-scale simulations. Methods that characterize a rare event in biochemical systems are part of such phenomenon, as many of them are computationally expensive and require high-performance computing. In this paper, we introduce an enhanced version of the doubly weighted stochastic simulation algorithm (dwSSA) (Daigle et al. in J Chem Phys 134:044110, 2011), called dwSSA[Formula: see text], that significantly improves the speed of convergence to the rare event of interest when the conventional multilevel cross-entropy method in dwSSA is either unable to converge or converges very slowly. This achievement is enabled by a novel polynomial leaping method that uses past data to detect slow convergence and attempts to push the system toward the rare event. We demonstrate the performance of dwSSA[Formula: see text] on two systems-a susceptible-infectious-recovered-susceptible disease dynamics model and a yeast polarization model-and compare its computational efficiency to that of dwSSA.
Identifiants
pubmed: 30225593
doi: 10.1007/s11538-018-0509-0
pii: 10.1007/s11538-018-0509-0
pmc: PMC6677716
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3097-3120Références
J Chem Phys. 2010 Feb 21;132(7):074101
pubmed: 20170209
Cell. 2013 Aug 29;154(5):1140-1150
pubmed: 23993101
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11157-62
pubmed: 16055564
EURASIP J Bioinform Syst Biol. 2011 Jul 25;2011(1):4
pubmed: 21910924
J Chem Phys. 2006 Jan 28;124(4):044104
pubmed: 16460146
J Chem Phys. 2010 Nov 7;133(17):174106
pubmed: 21054005
J Natl Cancer Inst. 1981 Jun;66(6):1037-52
pubmed: 6941039
J Chem Phys. 2005 May 8;122(18):184102
pubmed: 15918689
J Chem Phys. 2008 May 28;128(20):205101
pubmed: 18513044
Nature. 2014 Aug 14;512(7513):155-60
pubmed: 25079324
Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18445-50
pubmed: 20937911
J Chem Phys. 2009 Aug 7;131(5):054102
pubmed: 19673546
J Chem Phys. 2012 Jul 21;137(3):035104
pubmed: 22830733
J Chem Phys. 2009 Feb 14;130(6):064103
pubmed: 19222263
Sci Rep. 2015 Jan 19;5:7877
pubmed: 25597477
J Chem Phys. 2009 Jun 28;130(24):244104
pubmed: 19566139
Annu Rev Biochem. 2009;78:119-46
pubmed: 19231985
Dev Cell. 2015 Nov 23;35(4):471-82
pubmed: 26609960
J Chem Phys. 2005 Jan 1;122(1):14116
pubmed: 15638651
J Chem Phys. 2011 Dec 21;135(23):234108
pubmed: 22191865
J Chem Phys. 2008 Oct 28;129(16):165101
pubmed: 19045316
J Chem Phys. 2006 Aug 28;125(8):084103
pubmed: 16964997
J Chem Phys. 2013 Sep 21;139(11):115105
pubmed: 24070313
J Chem Phys. 2010 Oct 14;133(14):144108
pubmed: 20949988
Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15095-100
pubmed: 12415112
J Chem Phys. 2009 May 7;130(17):174103
pubmed: 19425765
Genetics. 1998 Aug;149(4):1633-48
pubmed: 9691025
J Chem Phys. 2011 Jan 28;134(4):044110
pubmed: 21280690
J Biol Chem. 2003 Jun 13;278(24):21798-804
pubmed: 12660244
J Chem Phys. 2004 Dec 1;121(21):10356-64
pubmed: 15549913
J Chem Phys. 2007 Jun 14;126(22):224101
pubmed: 17581038