Template-Based Statistical Modeling and Synthesis for Noise Analysis of Ballistocardiogram Signals: A Cycle-Averaged Approach.
Journal
IEEE journal of biomedical and health informatics
ISSN: 2168-2208
Titre abrégé: IEEE J Biomed Health Inform
Pays: United States
ID NLM: 101604520
Informations de publication
Date de publication:
07 2019
07 2019
Historique:
pubmed:
21
9
2018
medline:
25
1
2020
entrez:
21
9
2018
Statut:
ppublish
Résumé
Ballistocardiogram (BCG) can be recorded using inexpensive and non-invasive hardware to estimate physiological changes in the heart. In this paper, a methodology is developed to evaluate the impact of additive noise on the BCG signal. A statistical model is built that incorporates subject-specific BCG morphology. BCG signals segmented by electrocardiogram RR intervals (BCG heartbeats) are averaged to estimate a parent template and subtemplates leveraging the quasi-periodic nature of the heart. Noise statistics are obtained for subtemplates with respect to the parent template. Then, a synthesis algorithm with adjustable additive noise is devised to generate subtemplates based on the individual's parent template and statistics. For the example use of the synthesis algorithm, the average correlation coefficient between subtemplates and the parent template (subtemplate versus parent template approach) is tested as a signal quality index. A BCG heartbeat synthesis framework that incorporates an individual's BCG morphology and physiological variability was developed to quantify variations in the BCG signal against additive noise. The signal quality assessment of a person's BCG recording can be performed without requiring any a priori knowledge of the person's BCG morphology. A data-driven constraint on the required minimum number of heartbeats for a reliable template estimation was provided. The impact of additive noise on BCG morphology and estimated physiological parameters can be analyzed using the developed methodology without requiring prior statistics. This paper can facilitate the performance evaluation of BCG analysis algorithms against additive noise.
Identifiants
pubmed: 30235151
doi: 10.1109/JBHI.2018.2871141
pmc: PMC6707773
mid: NIHMS1533916
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1516-1525Subventions
Organisme : NHLBI NIH HHS
ID : R01 HL130619
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM008169
Pays : United States
Références
Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H677-87
pubmed: 10710334
Circulation. 1953 Jun;7(6):910-5
pubmed: 13051833
J Clin Invest. 1940 May;19(3):437-50
pubmed: 16694759
J Am Med Inform Assoc. 2007 May-Jun;14(3):269-77
pubmed: 17329725
Physiol Meas. 2008 Aug;29(8):979-88
pubmed: 18641428
Physiol Meas. 2009 Jul;30(7):679-93
pubmed: 19525570
Conf Proc IEEE Eng Med Biol Soc. 2010;2010:2557-60
pubmed: 21096445
IEEE Trans Inf Technol Biomed. 2011 Nov;15(6):864-9
pubmed: 21843998
J Am Coll Cardiol. 2012 Jan 10;59(2):97-104
pubmed: 22222071
IEEE Trans Biomed Eng. 2012 Aug;59(8):2137-43
pubmed: 22318479
IEEE J Biomed Health Inform. 2015 Jul;19(4):1414-27
pubmed: 25312966
Sci Rep. 2016 Aug 09;6:31297
pubmed: 27503664
Am Heart J. 1994 May;127(5):1376-81
pubmed: 8172068