Optical coherence tomography angiography features of choroidal neovascularization secondary to angioid streaks.
Journal
Eye (London, England)
ISSN: 1476-5454
Titre abrégé: Eye (Lond)
Pays: England
ID NLM: 8703986
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
25
01
2018
accepted:
07
08
2018
revised:
25
07
2018
pubmed:
27
9
2018
medline:
23
8
2019
entrez:
26
9
2018
Statut:
ppublish
Résumé
To characterize the features of choroidal neovascularization (CNV) secondary to angioid streaks (AS) with optical coherence tomography angiography (OCT-A) and to assess its sensitivity in CNV detection in this particular context. Consecutive patients, both with treatment-naïve and recurrent CNV associated with angioid streaks were prospectively analyzed. All patients underwent macular imaging by fluorescein angiography (FA), indocyanine green angiography (ICGA), spectral-domain (SD)-OCT, and OCT-A (AngioVue, Optovue, Optovue Inc., Freemont, CA, USA). OCT-A detection rate of CNV associated to AS was evaluated by two independent observers. We studied the association between OCT-A feature and either exudative or active status using Fisher exact test. A total of 32 eyes of 18 consecutive patients were included in the analysis. OCT-A was able to detect CNV associated with angioid streaks in 87.5 % (28/32) eyes. OCT-A phenotypes of CNV were classified into interlacing pattern in 9 eyes, pruned vascular tree pattern in 7 eyes, and combined pattern in 12 eyes (Interuser agreement: 0.871 ± 0.071). CNV were not detectable in 4/32 eyes. There was a statistically significant association between the presence in OCT-A of densely ramified networks with both previous treatment status in the last 6 months (p < 0.001) and with exudative signs on SD-OCT (p = 0.014). OCT-A appears as a sensitive tool for detection of CNV secondary to AS. The interlacing pattern was significantly associated with active and exudative features.
Identifiants
pubmed: 30250237
doi: 10.1038/s41433-018-0213-1
pii: 10.1038/s41433-018-0213-1
pmc: PMC6460696
doi:
Substances chimiques
Coloring Agents
0
Indocyanine Green
IX6J1063HV
Types de publication
Journal Article
Langues
eng
Pagination
385-391Références
Am J Med. 1961 Apr;30:537-43
pubmed: 13695083
Br J Ophthalmol. 2009 Feb;93(2):155-8
pubmed: 18971232
Br J Ophthalmol. 2009 Feb;93(2):182-5
pubmed: 18984656
Eur J Ophthalmol. 2009 Jan-Feb;19(1):151-3
pubmed: 19123166
Am J Ophthalmol. 2009 Oct;148(4):584-590.e2
pubmed: 19541288
Am J Ophthalmol. 2010 Nov;150(5):692-700.e1
pubmed: 20719301
Opt Express. 2012 Feb 13;20(4):4710-25
pubmed: 22418228
Ophthalmologica. 1988;197(1):36-41
pubmed: 2460816
Am J Ophthalmol. 2015 Jul;160(1):6-16
pubmed: 25887628
Am J Ophthalmol. 2015 Oct;160(4):739-48.e2
pubmed: 26164826
Ophthalmic Res. 2015;54(2):57-63
pubmed: 26201877
Retina. 2016 Mar;36(3):483-91
pubmed: 26355947
Retina. 2015 Nov;35(11):2212-8
pubmed: 26441269
Retina. 2015 Nov;35(11):2275-84
pubmed: 26457397
Retina. 2015 Nov;35(11):2236-41
pubmed: 26457399
Invest Ophthalmol Vis Sci. 2015 Dec;56(13):7638-45
pubmed: 26624495
J Ophthalmol. 2015;2015:134783
pubmed: 26634150
J Fr Ophtalmol. 2016 Apr;39(4):370-5
pubmed: 26850508
Ophthalmic Surg Lasers Imaging Retina. 2016 Feb;47(2):128-33
pubmed: 26878445
Br J Ophthalmol. 2016 Dec;100(12):1724-1730
pubmed: 26951771
Retina. 2016 Nov;36(11):2051-2058
pubmed: 27164548
Br J Ophthalmol. 2017 May;101(5):609-615
pubmed: 27531357
Retina. 2017 Feb;37(2):222-233
pubmed: 27627752
Retina. 2017 Nov;37(11):2095-2101
pubmed: 28590317
Retina. 2018 Nov;38(11):2128-2136
pubmed: 28961674
Retina. 2019 Mar;39(3):548-557
pubmed: 29210939
Am J Ophthalmol. 1967 Mar;63(3):Suppl:1-139
pubmed: 6019308
Retina. 1981;1(2):75-83
pubmed: 6184760
Surv Ophthalmol. 1982 Mar-Apr;26(5):235-46
pubmed: 7046115
Surv Ophthalmol. 1995 Mar-Apr;39(5):367-74
pubmed: 7604360
Am J Ophthalmol. 1993 Oct 15;116(4):414-23
pubmed: 7692728
Ophthalmology. 1996 Aug;103(8):1260-70
pubmed: 8764797
Jpn J Ophthalmol. 1998 Jul-Aug;42(4):300-3
pubmed: 9749871