Systematic Comparison of Zwitterionic and Non-Zwitterionic Antifouling Polymer Brushes on a Bead-Based Platform.
Journal
Langmuir : the ACS journal of surfaces and colloids
ISSN: 1520-5827
Titre abrégé: Langmuir
Pays: United States
ID NLM: 9882736
Informations de publication
Date de publication:
05 02 2019
05 02 2019
Historique:
pubmed:
29
9
2018
medline:
29
9
2018
entrez:
29
9
2018
Statut:
ppublish
Résumé
Nonspecific adsorption of biomolecules to solid surfaces, a process called biofouling, is a major concern in many biomedical applications. Great effort has been made in the development of antifouling polymer coatings that are capable of repelling the nonspecific adsorption of proteins, cells, and micro-organisms. In this respect, we herein contribute to understanding the factors that determine which polymer brush results in the best antifouling coating. To this end, we compared five different monomers: two sulfobetaines, a carboxybetaine, a phosphocholine, and a hydroxyl acrylamide. The antifouling coatings were analyzed using our previously described bead-based method with flow cytometry as the read-out system. This method allows for the quick and automated analysis of thousands of beads per second, enabling fast analysis and good statistics. We report the first direct comparison made between a sulfobetaine with opposite charges separated by two and three methylene groups and a carboxybetaine bearing two separating methylene groups. It was concluded that both the distance between opposite charges and the nature of the anionic groups have a distinct effect on the antifouling performance. Phosphocholines and simple hydroxyl acrylamides are not often compared with the betaines. However, here we found that they perform equally well or even better, yielding the following overall antifouling ranking: HPMAA ≥ PCMA-2 ≈ CBMAA-2 > SBMAA-2 > SBMAA-3 ≫ nonmodified beads (HPMAA being the best).
Identifiants
pubmed: 30265555
doi: 10.1021/acs.langmuir.8b01832
pmc: PMC6366122
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Pagination
1181-1191Références
J Phys Chem B. 2014 Jun 19;118(24):6956-62
pubmed: 24885910
Macromol Rapid Commun. 2011 Jul 1;32(13):952-7
pubmed: 21644241
J Colloid Interface Sci. 2015 Aug 15;452:43-53
pubmed: 25913777
Langmuir. 2016 Oct 11;32(40):10199-10205
pubmed: 27687696
J Mater Chem B. 2017 Sep 7;5(33):6728-6733
pubmed: 32264323
J Chromatogr A. 2006 Sep 15;1127(1-2):82-91
pubmed: 16814299
J Phys Chem B. 2005 Feb 24;109(7):2934-41
pubmed: 16851306
Biomacromolecules. 2008 Oct;9(10):2686-92
pubmed: 18785772
Adv Mater. 2010 Mar 5;22(9):920-32
pubmed: 20217815
J Mater Chem B. 2018 Nov 21;6(43):6930-6935
pubmed: 32254577
Anal Chem. 2017 Mar 21;89(6):3524-3531
pubmed: 28233990
Biomacromolecules. 2014 Aug 11;15(8):2982-91
pubmed: 24964712
Biosens Bioelectron. 2009 Mar 15;24(7):1924-30
pubmed: 19036575
Langmuir. 2017 Aug 29;33(34):8404-8412
pubmed: 28737401
J Am Chem Soc. 2001 Aug 15;123(32):7913-4
pubmed: 11493068
Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8004-31
pubmed: 25045074
Science. 1991 May 24;252(5009):1164-7
pubmed: 2031186
Langmuir. 2011 Mar 15;27(6):2587-94
pubmed: 21291256
Biomater Sci. 2015 Oct 15;3(10):1335-70
pubmed: 26215763
Biomaterials. 2013 Oct;34(31):7592-600
pubmed: 23871130
Adv Mater. 2015 Jan 7;27(1):15-26
pubmed: 25367090
Langmuir. 2016 Apr 12;32(14):3315-30
pubmed: 26986442
Langmuir. 2004 Jan 20;20(2):429-40
pubmed: 15743088
Langmuir. 2009 Jun 2;25(11):6328-33
pubmed: 19408903
J Phys Chem B. 2013 Feb 7;117(5):1357-66
pubmed: 23316760
ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38211-38221
pubmed: 29064669
J Phys Chem B. 2010 Dec 16;114(49):16625-31
pubmed: 21086974
Emerg Infect Dis. 2001 Mar-Apr;7(2):277-81
pubmed: 11294723
Sci Technol Adv Mater. 2012 Oct 18;13(6):064101
pubmed: 27877525
Biomacromolecules. 2008 May;9(5):1357-61
pubmed: 18376858
Langmuir. 2001 May 1;17(9):2841-2850
pubmed: 34139796
Macromol Rapid Commun. 2011 Jul 1;32(13):958-65
pubmed: 21648007
Langmuir. 2016 Mar 22;32(11):2698-707
pubmed: 26927024