ASPM promotes prostate cancer stemness and progression by augmenting Wnt-Dvl-3-β-catenin signaling.
Animals
Cell Line, Tumor
Cell Proliferation
/ genetics
Disease Progression
Dishevelled Proteins
/ genetics
Gene Expression Regulation, Neoplastic
Humans
Male
Mice
Neoplastic Stem Cells
/ metabolism
Nerve Tissue Proteins
/ genetics
Prostatic Neoplasms
/ genetics
Wnt Signaling Pathway
/ genetics
Xenograft Model Antitumor Assays
beta Catenin
/ genetics
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
received:
22
01
2018
accepted:
15
08
2018
revised:
18
07
2018
pubmed:
30
9
2018
medline:
5
3
2019
entrez:
30
9
2018
Statut:
ppublish
Résumé
Recurrent and hormone-refractory prostate cancer (PCA) exhibits aggressive behaviors while current therapeutic approaches show little effect of prolonging the survival of patients with PCA. Thus, a deeper understanding of the patho-molecular mechanisms underlying the disease progression in PCA is crucial to identify novel diagnostic and/or therapeutic targets to improve the outcome of patients. Recent evidence suggests that activation of Wnt signaling in cancer stem cells (CSCs) contributes to cancer progression in malignant tumors. Here, we report that a novel Wnt co-activator ASPM (abnormal spindle-like microcephaly associated) maintains the prostate CSC subpopulation by augmenting the Wnt-β-catenin signaling in PCA. ASPM expression is incrementally upregulated in primary and metastatic PCA, implicating its potential role in PCA progression. Consistently, downregulation of ASPM expression pronouncedly attenuated the proliferation, colony formation, and the invasive behavior of PCA cells, and dramatically reduced the number of ALDH
Identifiants
pubmed: 30266990
doi: 10.1038/s41388-018-0497-4
pii: 10.1038/s41388-018-0497-4
doi:
Substances chimiques
ASPM protein, human
0
CTNNB1 protein, human
0
DVL3 protein, human
0
Dishevelled Proteins
0
Nerve Tissue Proteins
0
beta Catenin
0
Types de publication
Journal Article
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1340-1353Subventions
Organisme : Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
ID : MOST 105-2314-B-400-018
Pays : International
Organisme : Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
ID : MOST 105-2314-B-400-003
Pays : International
Organisme : Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
ID : MOST 105-2314-B-400-003
Pays : International
Organisme : National Health Research Institutes (NHRI)
ID : CA-106-PP-09
Pays : International
Commentaires et corrections
Type : ErratumIn
Références
Bill-Axelson A, Holmberg L, Ruutu M, Haggman M, Andersson SO, Bratell S, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med. 2005;352:1977–84.
doi: 10.1056/NEJMoa043739
pubmed: 15888698
Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 1999;281:1591–7.
doi: 10.1001/jama.281.17.1591
pubmed: 10235151
Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, et al. Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastas- Rev. 2001;20:333–49.
doi: 10.1023/A:1015599831232
Hellerstedt BA, Pienta KJ. The current state of hormonal therapy for prostate cancer. CA Cancer J Clin. 2002;52:154–79.
doi: 10.3322/canjclin.52.3.154
pubmed: 12018929
Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology. 2002;60:94–100.
doi: 10.1016/S0090-4295(02)01583-2
pubmed: 12231060
Kouprina N, Pavlicek A, Collins NK, Nakano M, Noskov VN, Ohzeki J, et al. The microcephaly ASPM gene is expressed in proliferating tissues and encodes for a mitotic spindle protein. Hum Mol Genet. 2005;14:2155–65.
doi: 10.1093/hmg/ddi220
pubmed: 15972725
Bruning-Richardson A, Bond J, Alsiary R, Richardson J, Cairns DA, McCormack L, et al. ASPM and microcephalin expression in epithelial ovarian cancer correlates with tumour grade and survival. Br J Cancer. 2011;104:1602–10.
doi: 10.1038/bjc.2011.117
pmcid: 3101901
pubmed: 21505456
van der Voet M, Berends CW, Perreault A, Nguyen-Ngoc T, Gonczy P, Vidal M, et al. NuMA-related LIN-5, ASPM-1, calmodulin and dynein promote meiotic spindle rotation independently of cortical LIN-5/GPR/Galpha. Nat Cell Biol. 2009;11:269–77.
doi: 10.1038/ncb1834
pubmed: 19219036
Fish JL, Kosodo Y, Enard W, Paabo S, Huttner WB. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc Natl Acad Sci USA. 2006;103:10438–43.
doi: 10.1073/pnas.0604066103
pmcid: 1502476
pubmed: 16798874
Capecchi MR, Pozner A. ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination. Nat Commun. 2015;6:8763.
doi: 10.1038/ncomms9763
pubmed: 26581405
Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, et al. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nat Cell Biol. 2017;19:480–92.
doi: 10.1038/ncb3511
pmcid: 5458804
pubmed: 28436967
Bikeye SN, Colin C, Marie Y, Vampouille R, Ravassard P, Rousseau A, et al. ASPM-associated stem cell proliferation is involved in malignant progression of gliomas and constitutes an attractive therapeutic target. Cancer Cell Int. 2010;10:1.
doi: 10.1186/1475-2867-10-1
pmcid: 2817685
pubmed: 20142996
Lin SY, Pan HW, Liu SH, Jeng YM, Hu FC, Peng SY, et al. ASPM is a novel marker for vascular invasion, early recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res. 2008;14:4814–20.
doi: 10.1158/1078-0432.CCR-07-5262
pubmed: 18676753
Xie JJ, Zhuo YJ, Zheng Y, Mo RJ, Liu ZZ, Li BW, et al. High expression of ASPM correlates with tumor progression and predicts poor outcome in patients with prostate cancer. Int Urol Nephrol. 2017;49:817–23.
doi: 10.1007/s11255-017-1545-7
pubmed: 28213802
Vange P, Bruland T, Beisvag V, Erlandsen SE, Flatberg A, Doseth B, et al. Genome-wide analysis of the oxyntic proliferative isthmus zone reveals ASPM as a possible gastric stem/progenitor cell marker over-expressed in cancer. J Pathol. 2015;237:447–59.
doi: 10.1002/path.4591
pmcid: 5049620
pubmed: 26178168
Wang WY, Hsu CC, Wang TY, Li CR, Hou YC, Chu JM, et al. A gene expression signature of epithelial tubulogenesis and a role for ASPM in pancreatic tumor progression. Gastroenterology. 2013;145:1110–20.
doi: 10.1053/j.gastro.2013.07.040
pubmed: 23896173
Major MB, Roberts BS, Berndt JD, Marine S, Anastas J, Chung N, et al. New regulators of Wnt/beta-catenin signaling revealed by integrative molecular screening. Sci Signal. 2008;1:ra12.
pubmed: 19001663
Buchman JJ, Durak O, Tsai LH. ASPM regulates Wnt signaling pathway activity in the developing brain. Genes Dev. 2011;25:1909–14.
doi: 10.1101/gad.16830211
pmcid: 3185963
pubmed: 21937711
Yokoyama NN, Shao S, Hoang BH, Mercola D, Zi X. Wnt signaling in castration-resistant prostate cancer: implications for therapy. Am J Clin Exp Urol. 2014;2:27–44.
pubmed: 25143959
pmcid: 4219296
Schneider JA, Logan SK.Revisiting the role of Wnt/beta-catenin signaling in prostate cancer.Mol Cell Endocrinol. 2018;462(Pt A):3–8.
doi: 10.1016/j.mce.2017.02.008
pubmed: 28189566
Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009;19:683–97.
doi: 10.1038/cr.2009.43
pubmed: 19365403
van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzman-Ramirez N, et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 2010;70:5163–73.
doi: 10.1158/0008-5472.CAN-09-3806
pubmed: 20516116
Liu C, Liu R, Zhang D, Deng Q, Liu B, Chao HP, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nat Commun. 2017;8:14270.
doi: 10.1038/ncomms14270
pmcid: 5264244
pubmed: 28112170
Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004;117:3539–45.
doi: 10.1242/jcs.01222
pubmed: 15226377
Li T, Su Y, Mei Y, Leng Q, Leng B, Liu Z, et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Lab Invest. 2010;90:234–44.
doi: 10.1038/labinvest.2009.127
pubmed: 20010854
Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149:1192–205.
doi: 10.1016/j.cell.2012.05.012
pubmed: 22682243
Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.
doi: 10.1038/nrc2499
pubmed: 18784658
Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.
doi: 10.1038/nature03319
pubmed: 15829953
Thomsen MK, Ambroisine L, Wynn S, Cheah KS, Foster CS, Fisher G, et al. SOX9 elevation in the prostate promotes proliferation and cooperates with PTEN loss to drive tumor formation. Cancer Res. 2010;70:979–87.
doi: 10.1158/0008-5472.CAN-09-2370
pmcid: 3083842
pubmed: 20103652
Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells. Cancer Res. 2007;67:528–36.
doi: 10.1158/0008-5472.CAN-06-1672
pubmed: 17234760
Ma F, Ye H, He HH, Gerrin SJ, Chen S, Tanenbaum BA, et al. SOX9 drives WNT pathway activation in prostate cancer. J Clin Invest. 2016;126:1745–58.
doi: 10.1172/JCI78815
pmcid: 4855922
pubmed: 27043282
Nandana S, Tripathi M, Duan P, Chu CY, Mishra R, Liu C, et al. Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res. 2017;77:1331–44.
doi: 10.1158/0008-5472.CAN-16-0497
pmcid: 5783646
pubmed: 28108510
Gao C, Chen YG. Dishevelled: The hub of Wnt signaling. Cell Signal. 2010;22:717–27.
doi: 10.1016/j.cellsig.2009.11.021
pubmed: 20006983
Angers S, Thorpe CJ, Biechele TL, Goldenberg SJ, Zheng N, MacCoss MJ, et al. The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol. 2006;8:348–57.
doi: 10.1038/ncb1381
pubmed: 16547521
Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.
doi: 10.1038/nature10694
Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.
doi: 10.1038/ncb2048
pubmed: 20418870
Oskarsson T, Acharyya S, Zhang XH, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med. 2011;17:867–74.
doi: 10.1038/nm.2379
pmcid: 4020577
pubmed: 21706029
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell. 2011;21:120–33.
doi: 10.1016/j.devcel.2011.06.011
pmcid: 3166557
pubmed: 21763613
Strutt DI, Weber U, Mlodzik M. The role of RhoA in tissue polarity and Frizzled signalling. Nature. 1997;387:292–5.
doi: 10.1038/387292a0
pubmed: 9153394
Narimatsu M, Bose R, Pye M, Zhang L, Miller B, Ching P, et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell. 2009;137:295–307.
doi: 10.1016/j.cell.2009.02.025
pubmed: 19379695
Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56.
doi: 10.1016/j.cell.2012.11.024
pubmed: 23260141
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.
doi: 10.1073/pnas.0530291100
pmcid: 153034
pubmed: 12629218
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.
doi: 10.1158/0008-5472.CAN-06-2030
pubmed: 17283135
Arensman MD, Kovochich AN, Kulikauskas RM, Lay AR, Yang PT, Li X, et al. WNT7B mediates autocrine Wnt/beta-catenin signaling and anchorage-independent growth in pancreatic adenocarcinoma. Oncogene. 2014;33:899–908.
doi: 10.1038/onc.2013.23
pubmed: 23416978
Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res. 1986;46:5419–25.
pubmed: 3756890
Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.
doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
pubmed: 15405679
Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239–243.
doi: 10.1038/nature11125
pmcid: 3396711
pubmed: 22722839
Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, et al.Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic proces.BMC Cancer. 2007;7:64
doi: 10.1186/1471-2407-7-64
pmcid: 1865555
pubmed: 17430594
Varambally S, Yu J, Laxman B, Rhodes DR, Mehra R, Tomlins SA, et al.Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005;8:393–406.
doi: 10.1016/j.ccr.2005.10.001
pubmed: 16286247