Preoperative laxity in ACL-deficient knees increases with posterior tibial slope and medial meniscal tears.
Adolescent
Adult
Anterior Cruciate Ligament Injuries
/ diagnostic imaging
Biomechanical Phenomena
Cohort Studies
Female
Humans
Joint Instability
/ diagnostic imaging
Male
Middle Aged
Preoperative Period
Prospective Studies
Range of Motion, Articular
Tibia
/ diagnostic imaging
Tibial Meniscus Injuries
/ diagnostic imaging
Young Adult
ACL reconstruction
Anterior cruciate ligament
Knee laxity
Meniscal tears
Tibial slope
Journal
Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA
ISSN: 1433-7347
Titre abrégé: Knee Surg Sports Traumatol Arthrosc
Pays: Germany
ID NLM: 9314730
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
07
06
2018
accepted:
20
09
2018
pubmed:
1
10
2018
medline:
16
4
2019
entrez:
1
10
2018
Statut:
ppublish
Résumé
The aim of this study was to determine patient and anatomic factors that influence anteroposterior and rotational laxity in knees with ACL tears. Based on the findings of biomechanical studies, we hypothesized that static and dynamic anterior tibial translation (ATT) as well as positive pivot shift would increase with female gender, tibial slope, and meniscal tears. The authors prospectively collected preoperative data and intraoperative findings of 417 patients that underwent ACL reconstruction. The exclusion criteria were: revision ACL procedures (n = 53), other surgical antecedents (n = 27), prior osteotomies (n = 7) or concomitant ligament tears on the ipsilateral knee (n = 34), and history of ACL tears in the contralateral knee (n = 45), leaving a study cohort of 251 patients. Their preoperative anteroposterior knee laxity was assessed objectively using 'static' monopodal weight-bearing radiographs and 'dynamic' instrumented differential measurements of ATT. Rotational laxity was assessed subjectively using the pivot shift test. Multivariable regression showed that static ATT increases only with tibial slope (β = 0.30; p < 0.001), but dynamic ATT increases with tibial slope (β = 0.19; p = 0.041), medial meniscal tears (β = 1.27; p = 0.007), complete ACL tears (β = 2.06; p < 0.001), and to decrease with age (β = - 0.09; p < 0.001). Multivariable regression also indicated that high-grade pivot shift decreases with age (OR 0.94; p < 0.001) and for women (OR 0.25; p < 0.001), and to be higher for knees with complete ACL tears (OR 3.04; p = 0.002) or medial meniscal tears (OR 2.28; p = 0.010). Contrary to expectations based on biomechanical studies, static ATT was only affected by high posterior tibial slope, while dynamic ATT was affected by both high posterior tibial slopes and medial meniscal tears, but not by gender or lateral meniscal tears. Likewise, pivot shift was affected by gender and medial meniscal tears, but not lateral meniscal tears or posterior tibial slope. These findings are relevant to guide surgeons in optimizing their surgical procedures, such as conserving the menisci when possible, and rehabilitation protocols, by delaying full weight-bearing and return to sports in patients with anatomic and lesional risk factors. Cohort study, Level IV.
Identifiants
pubmed: 30269166
doi: 10.1007/s00167-018-5180-3
pii: 10.1007/s00167-018-5180-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
564-572Références
J Sci Med Sport. 2008 Jun;11(3):257-63
pubmed: 17597005
Am J Sports Med. 2010 Aug;38(8):1591-7
pubmed: 20530720
Br J Sports Med. 2011 Apr;45(4):245-52
pubmed: 20558526
Orthop Traumatol Surg Res. 2010 Dec;96(8 Suppl):S109-18
pubmed: 21056025
Comput Methods Biomech Biomed Engin. 2012;15(12):1323-8
pubmed: 21728739
Am J Sports Med. 2011 Oct;39(10):2187-93
pubmed: 21828365
Knee Surg Sports Traumatol Arthrosc. 2012 Nov;20(11):2220-4
pubmed: 22205097
Knee Surg Sports Traumatol Arthrosc. 2012 Apr;20(4):713-7
pubmed: 22222615
Knee Surg Sports Traumatol Arthrosc. 2012 Nov;20(11):2239-42
pubmed: 22234785
Knee Surg Sports Traumatol Arthrosc. 2012 Apr;20(4):718-23
pubmed: 22323098
Knee Surg Sports Traumatol Arthrosc. 2013 Jan;21(1):134-45
pubmed: 22395233
Knee Surg Sports Traumatol Arthrosc. 2013 Feb;21(2):372-9
pubmed: 22476528
Orthop Traumatol Surg Res. 2012 Nov;98(7):751-8
pubmed: 23063311
Orthop Traumatol Surg Res. 2012 Nov;98(7):744-50
pubmed: 23084264
Am J Sports Med. 2013 Mar;41(3):678-83
pubmed: 23339836
Arthroscopy. 2013 Mar;29(3):491-9
pubmed: 23343713
Eur J Appl Physiol. 2014 Feb;114(2):285-94
pubmed: 24240566
Med Sci Monit. 2013 Nov 29;19:1080-8
pubmed: 24287619
Am J Sports Med. 2014 Apr;42(4):927-33
pubmed: 24553814
Knee Surg Sports Traumatol Arthrosc. 2015 Aug;23(8):2330-2338
pubmed: 24832695
Am J Sports Med. 2014 Aug;42(8):1873-80
pubmed: 24872364
Chin Med J (Engl). 2014;127(14):2649-53
pubmed: 25043083
Int Orthop. 2015 Apr;39(4):681-7
pubmed: 25398470
Am J Sports Med. 2015 Apr;43(4):857-64
pubmed: 25612764
J Clin Epidemiol. 2015 Jun;68(6):627-36
pubmed: 25704724
J Biomech. 2015 Jul 16;48(10):1899-905
pubmed: 25920895
Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23(10):2967-73
pubmed: 26264383
Knee Surg Sports Traumatol Arthrosc. 2015 Oct;23(10):2846-52
pubmed: 26298711
Am J Sports Med. 2015 Oct;43(10):2510-4
pubmed: 26320223
Am J Sports Med. 2016 Feb;44(2):400-8
pubmed: 26657852
Arthroscopy. 2016 Jun;32(6):1080-5
pubmed: 26821957
Curr Rev Musculoskelet Med. 2016 Jun;9(2):160-3
pubmed: 26970757
Knee Surg Sports Traumatol Arthrosc. 2017 Apr;25(4):1170-1176
pubmed: 27154279
Knee Surg Sports Traumatol Arthrosc. 2016 Nov;24(11):3599-3604
pubmed: 27371290
Am J Sports Med. 2016 Dec;44(12):3126-3131
pubmed: 27507843
Knee Surg Sports Traumatol Arthrosc. 2017 Apr;25(4):1111-1116
pubmed: 28243704
Bone Joint J. 2017 Mar;99-B(3):337-343
pubmed: 28249973
J Biomech. 2017 May 24;57:117-124
pubmed: 28457606
Knee Surg Sports Traumatol Arthrosc. 2018 Apr;26(4):1174-1181
pubmed: 28484790
J Knee Surg. 2017 Oct;30(8):736-745
pubmed: 28582785
Orthop J Sports Med. 2017 Jul 21;5(7):2325967117718781
pubmed: 28795075
Knee Surg Sports Traumatol Arthrosc. 2018 May;26(5):1319-1325
pubmed: 28823037
Knee Surg Sports Traumatol Arthrosc. 2018 Sep;26(9):2697-2703
pubmed: 28889191
Knee Surg Sports Traumatol Arthrosc. 2018 Sep;26(9):2835-2840
pubmed: 29030647
Am J Sports Med. 2018 Feb;46(2):357-362
pubmed: 29065270
Knee Surg Sports Traumatol Arthrosc. 2018 May;26(5):1406-1413
pubmed: 29124285
Knee Surg Sports Traumatol Arthrosc. 2018 Aug;26(8):2362-2370
pubmed: 29150746
Knee Surg Sports Traumatol Arthrosc. 2018 Dec;26(12):3717-3723
pubmed: 29869200
Knee Surg Sports Traumatol Arthrosc. 2018 Jun 21;:null
pubmed: 29931484
Knee Surg Sports Traumatol Arthrosc. 2018 Dec;26(12):3724-3730
pubmed: 29947841
Rev Chir Orthop Reparatrice Appar Mot. 1988;74(7):622-36
pubmed: 3241893
J Bone Joint Surg Br. 1987 Mar;69(2):294-9
pubmed: 3818763
J Am Vet Med Assoc. 1983 Aug 15;183(4):456-9
pubmed: 6618973
J Am Vet Med Assoc. 1984 Mar 1;184(5):564-9
pubmed: 6706801
J Bone Joint Surg Br. 1994 Sep;76(5):745-9
pubmed: 8083263
Clin Orthop Relat Res. 1976 Jul-Aug;(118):63-9
pubmed: 954292