Safety and efficacy of low-dose sirolimus in the PIK3CA-related overgrowth spectrum.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
05 2019
Historique:
received: 19 04 2018
accepted: 29 08 2018
pubmed: 3 10 2018
medline: 14 2 2020
entrez: 2 10 2018
Statut: ppublish

Résumé

PIK3CA-related overgrowth spectrum (PROS) encompasses a range of debilitating conditions defined by asymmetric overgrowth caused by mosaic activating PIK3CA variants. PIK3CA encodes the p110α catalytic subunit of phosphatidylinositol-3-kinase (PI3K), a critical transducer of growth factor signaling. As mTOR mediates the growth-promoting actions of PI3K, we hypothesized that the mTOR inhibitor sirolimus would slow pathological overgrowth. Thirty-nine participants with PROS and progressive overgrowth were enrolled into open-label studies across three centers, and results were pooled. For the primary outcome, tissue volumes at affected and unaffected sites were measured by dual energy X-ray absorptiometry during 26 weeks of untreated run-in and 26 weeks of sirolimus therapy. Thirty participants completed the study. Sirolimus led to a change in mean percentage total tissue volume of -7.2% (SD 16.0, p = 0.04) at affected sites, but not at unaffected sites (+1.7%, SD 11.5, p = 0.48) (n = 23 evaluable). Twenty-eight of 39 (72%) participants had ≥1 adverse event related to sirolimus of which 37% were grade 3 or 4 in severity and 7/39 (18%) participants were withdrawn consequently. This study suggests that low-dose sirolimus can modestly reduce overgrowth, but cautions that the side-effect profile is significant, mandating individualized risk-benefit evaluations for sirolimus treatment in PROS.

Identifiants

pubmed: 30270358
doi: 10.1038/s41436-018-0297-9
pii: S1098-3600(21)01473-8
pmc: PMC6752269
doi:

Substances chimiques

MTOR protein, human EC 2.7.1.1
Class I Phosphatidylinositol 3-Kinases EC 2.7.1.137
PIK3CA protein, human EC 2.7.1.137
TOR Serine-Threonine Kinases EC 2.7.11.1
Sirolimus W36ZG6FT64

Types de publication

Journal Article Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1189-1198

Subventions

Organisme : Department of Health
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : T32 DK007013
Pays : United States
Organisme : Wellcome Trust
ID : WT098498
Pays : United Kingdom

Références

Keppler-Noreuil KM, Rios JJ, Parker VER, et al. PIK3CA-related overgrowth spectrum (PROS): diagnostic and testing eligibility criteria, differential diagnosis, and evaluation. Am J Med Genet A. 2014;167A:287–295.
pubmed: 25557259
Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13:195–203.
doi: 10.1038/nrm3290
Kurek KC, Luks VL, Ayturk UM, et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am J Hum Genet. 2012;90:1108–1115.
doi: 10.1016/j.ajhg.2012.05.006
Lindhurst MJ, Parker VER, Payne F, et al. Mosaic overgrowth with fibroadipose hyperplasia is caused by somatic activating mutations in PIK3CA. Nat Genet. 2012;44:928–933.
doi: 10.1038/ng.2332
Rivière J-B, Mirzaa GM, O’Roak BJ, et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat Genet. 2012;44:934–940.
doi: 10.1038/ng.2331
Rios JJ, Paria N, Burns DK, et al. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum Mol Genet. 2013;22:444–451.
doi: 10.1093/hmg/dds440
Hardwicke J, Khan MAA, Richards H, Warner RM, Lester R. Macrodactyly—options and outcomes. J Hand Surg Eur Vol. 2013;38:297–303.
doi: 10.1177/1753193412451232
Mirzaa G, Timms AE, Conti V, et al. PIK3CA-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution. JCI Insight. 2016;1. pii: e87623
Keppler-Noreuil KM, Sapp JC, Lindhurst MJ, et al. Clinical delineation and natural history of the PIK3CA -related overgrowth spectrum. Am J Med Genet A. 2014;164:1713–1733.
doi: 10.1002/ajmg.a.36552
Elkabets M, Vora S, Juric D, et al. mTORC1 inhibition is required for sensitivity to PI3Kp110α inhibitors in PIK3CA-mutant breast cancer. Sci Transl Med. 2013;5:196ra99.
doi: 10.1126/scitranslmed.3005747
Loconte DC, Grossi V, Bozzao C, et al. Molecular and functional characterization of three different postzygotic mutations in PIK3CA-related overgrowth spectrum (PROS) patients: effects on PI3K/AKT/mTOR signaling and sensitivity to PIK3 inhibitors. PLoS ONE. 2015;10:e0123092.
doi: 10.1371/journal.pone.0123092
Suzuki Y, Enokido Y, Yamada K, et al. The effect of rapamycin, NVP-BEZ235, aspirin, and metformin on PI3K/AKT/mTOR signaling pathway of PIK3CA-related overgrowth spectrum (PROS). Oncotarget. 2017;8:45470–45483.
pubmed: 28525374 pmcid: 5542201
Parker V, Huson S, Isaac I, et al. Sirolimus therapy for a patient with segmental overgrowth due to a mosaic activating mutation in phosphatidylinositol-3-kinase. Endocr Abstr. 2014;177:175–186.
Hammill AM, Wentzel M, Gupta A, et al. Sirolimus for the treatment of complicated vascular anomalies in children. Pediatr Blood Cancer. 2011;57:1018–1024.
doi: 10.1002/pbc.23124
Boscolo E, Limaye N, Huang L, et al. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects. J Clin Invest. 2015;125:3491–3504.
doi: 10.1172/JCI76004
Nadal M, Giraudeau B, Tavernier E, Jonville-Bera A, Lorette G, Maruani A. Efficacy and safety of mammalian target of rapamycin inhibitors in vascular anomalies: a systematic review. Acta Derm Venereol. 2016;96:448–452.
doi: 10.2340/00015555-2300
Adams DM, Trenor CC, Hammill AM, et al. Efficacy and safety of sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137:e20153257–e20153257.
doi: 10.1542/peds.2015-3257
Kuentz P, St-Onge J, Duffourd Y, et al. Molecular diagnosis of PIK3CA-related overgrowth spectrum (PROS) in 162 patients and recommendations for genetic testing. Genet Med. 2017;19:989–997.
doi: 10.1038/gim.2016.220
Scott JR, Courter JD, Saldaña SN, et al. Population pharmacokinetics of sirolimus in pediatric patients with neurofibromatosis type 1. Ther Drug Monit. 2013;35:332–337.
doi: 10.1097/FTD.0b013e318286dd3f
Parker VER, Knox RG, Zhang Q, Wakelam MJO, Semple RK. Phosphoinositide 3-kinase-related overgrowth: cellular phenotype and future therapeutic options. Lancet. 2015;385:S77.
doi: 10.1016/S0140-6736(15)60392-0
Thomsen TK, Jensen VJ, Henriksen MG. In vivo measurement of human body composition by dual-energy X-ray absorptiometry (DXA). Eur J Surg. 1998;164:133–137.
doi: 10.1080/110241598750004797
Siri WE. Body composition from fluid spaces and density: analysis of methods. Nutrition. 1961;9:480–492
Skevington SM, Lotfy M, O’Connell KA, WHOQOL Group. The World Health Organization’s WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL Group. Qual Life Res. 2004;13:299–310.
doi: 10.1023/B:QURE.0000018486.91360.00
Varni JW, Seid M, Rode CA. The PedsQL: measurement model for the pediatric quality of life inventory. Med Care. 1999;37:126–139.
doi: 10.1097/00005650-199902000-00003
Varni JW, Burwinkle TM, Berrin SJ, et al. The PedsQL in pediatric cerebral palsy: reliability, validity, and sensitivity of the Generic Core Scales and Cerebral Palsy Module. Dev Med Child Neurol. 2006;48:442.
doi: 10.1017/S001216220600096X
Varni JW, Seid M, Kurtin PS. PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med Care. 2001;39:800–812.
doi: 10.1097/00005650-200108000-00006
Development of the World Health Organization WHOQOL-BREF quality of life assessment. The WHOQOL Group. Psychol Med. 1998;28:551–558.
Krueger DA, Care MM, Holland K, et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med. 2010;363:1801–1811.
doi: 10.1056/NEJMoa1001671
CHMP. ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000273/human_med_001010.jsp&mid=WC0b01ac058001d124 Accessed 20 September 2018.
Venot Q, Blanc T, Rabia SH, et al. Targeted therapy in patients with PIK3CA-related overgrowth syndrome. Nature. 2018;558:540–546.
doi: 10.1038/s41586-018-0217-9

Auteurs

Victoria E R Parker (VER)

Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Kim M Keppler-Noreuil (KM)

Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Laurence Faivre (L)

Centres de références Anomalies du Développement et Anomalies Dermatologiques Rares, Equipe GAD UMR1231 et FHU TRANSLAD, CHU Dijon-Bourgogne et Université de Bourgogne, Dijon, France.

Maxime Luu (M)

Centre d'Investigation Clinique INSERM 1432, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne, France.

Neal L Oden (NL)

The EMMES Corporation, Rockville, MD, USA.

Leena De Silva (L)

Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Julie C Sapp (JC)

Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Katrina Andrews (K)

Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Marc Bardou (M)

Centre d'Investigation Clinique INSERM 1432, Centre Hospitalier Universitaire de Dijon, Dijon, Bourgogne, France.

Kong Y Chen (KY)

Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

Thomas N Darling (TN)

Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Elodie Gautier (E)

Centres de références Anomalies du Développement et Anomalies Dermatologiques Rares, Equipe GAD UMR1231 et FHU TRANSLAD, CHU Dijon-Bourgogne et Université de Bourgogne, Dijon, France.

Barry R Goldspiel (BR)

Pharmacy Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Smail Hadj-Rabia (S)

Department of Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), Université Paris Descartes - Sorbonne Paris Cité, INSERM U1163, Institut Imagine, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Paris, France.

Julie Harris (J)

Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Georgios Kounidas (G)

Institute of Metabolic Science, University of Cambridge, Cambridge, UK.

Parag Kumar (P)

Pharmacy Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD, USA.

Marjorie J Lindhurst (MJ)

Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Romaric Loffroy (R)

Department of Interventional Radiology, Dijon University Hospital, Dijon, France.

Ludovic Martin (L)

Department of Dermatology, University Hospital Center of Angers, Angers, France.

Alice Phan (A)

Department of Dermatology, Claude Bernard-Lyon 1 University and Hospices Civils de Lyon, Lyon, France.

Kristina I Rother (KI)

Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.

Brigitte C Widemann (BC)

NCI, CCR, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, USA.

Pamela L Wolters (PL)

NCI, CCR, Pediatric Oncology Branch, National Institutes of Health, Bethesda, MD, USA.

Christine Coubes (C)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, Montpellier, France.

Lucile Pinson (L)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, Montpellier, France.

Marjolaine Willems (M)

Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, CHU de Montpellier, Montpellier, France.

Catherine Vincent-Delorme (C)

Service de Génétique médicale, Hôpital Jeanne de Flandre, CHRU de Lille, Lille, France.

Pierre Vabres (P)

Centres de références Anomalies du Développement et Anomalies Dermatologiques Rares, Equipe GAD UMR1231 et FHU TRANSLAD, CHU Dijon-Bourgogne et Université de Bourgogne, Dijon, France.

Robert K Semple (RK)

Institute of Metabolic Science, University of Cambridge, Cambridge, UK. rsemple@ed.ac.uk.
Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK. rsemple@ed.ac.uk.

Leslie G Biesecker (LG)

Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH