Automated unsupervised behavioral state classification using intracranial electrophysiology.


Journal

Journal of neural engineering
ISSN: 1741-2552
Titre abrégé: J Neural Eng
Pays: England
ID NLM: 101217933

Informations de publication

Date de publication:
04 2019
Historique:
pubmed: 3 10 2018
medline: 21 4 2020
entrez: 3 10 2018
Statut: ppublish

Résumé

Automated behavioral state classification in intracranial EEG (iEEG) recordings may be beneficial for iEEG interpretation and quantifying sleep patterns to enable behavioral state dependent neuromodulation therapy in next generation implantable brain stimulation devices. Here, we introduce a fully automated unsupervised framework to differentiate between awake (AW), sleep (N2), and slow wave sleep (N3) using intracranial EEG (iEEG) only and validated with expert scored polysomnography. Data from eight patients undergoing evaluation for epilepsy surgery (age [Formula: see text], three female) with intracranial depth electrodes for iEEG monitoring were included. Spectral power features (0.1-235 Hz) spanning several frequency bands from a single electrode were used to classify behavioral states of patients into AW, N2, and N3. Overall, classification accuracy of 94%, with 94% sensitivity and 93% specificity across eight subjects using multiple spectral power features from a single electrode was achieved. Classification performance of N3 sleep was significantly better (95%, sensitivity 95%, specificity 93%) than that of the N2 sleep phase (87%, sensitivity 78%, specificity 96%). Automated, unsupervised, and robust classification of behavioral states based on iEEG data is possible, and it is feasible to incorporate these algorithms into future implantable devices with limited computational power, memory, and number of electrodes for brain monitoring and stimulation.

Identifiants

pubmed: 30277223
doi: 10.1088/1741-2552/aae5ab
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

026004

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS092882
Pays : United States
Organisme : NINDS NIH HHS
ID : UH2 NS095495
Pays : United States

Auteurs

Vaclav Kremen (V)

Department of Neurology, Mayo Systems Electrophysiology Laboratory, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America. Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych Partyzanu 1580/3, 160 00 Prague 6, Czechia. Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, United States of America.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH