TAK1 mediates convergence of cellular signals for death and survival.
Apoptosis
Autophagy
Cytokine
Inflammatory
Smad
Journal
Apoptosis : an international journal on programmed cell death
ISSN: 1573-675X
Titre abrégé: Apoptosis
Pays: Netherlands
ID NLM: 9712129
Informations de publication
Date de publication:
02 2019
02 2019
Historique:
pubmed:
6
10
2018
medline:
21
4
2020
entrez:
6
10
2018
Statut:
ppublish
Résumé
TGF-β activated kinase 1, a MAPK kinase kinase family serine threonine kinase has been implicated in regulating diverse range of cellular processes that include embryonic development, differentiation, autophagy, apoptosis and cell survival. TAK1 along with its binding partners TAB1, TAB2 and TAB3 displays a complex pattern of regulation that includes serious crosstalk with major signaling pathways including the C-Jun N-terminal kinase (JNK), p38 MAPK, and I-kappa B kinase complex (IKK) involved in establishing cellular commitments for death and survival. This review also highlights how TAK1 orchestrates regulation of energy homeostasis via AMPK and its emerging role in influencing mTORC1 pathway to regulate death or survival in tandem.
Identifiants
pubmed: 30288639
doi: 10.1007/s10495-018-1490-7
pii: 10.1007/s10495-018-1490-7
doi:
Substances chimiques
Mechanistic Target of Rapamycin Complex 1
EC 2.7.11.1
MAP Kinase Kinase Kinases
EC 2.7.11.25
MAP kinase kinase kinase 7
EC 2.7.11.25
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
3-20Références
Massagué J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309
doi: 10.1016/S0092-8674(00)00121-5
pubmed: 11057902
Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584. https://doi.org/10.1038/nature02006
doi: 10.1038/nature02006
pubmed: 14534577
Hartsough MT, Mulder KM (1995) Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem 270:7117–7124
doi: 10.1074/jbc.270.13.7117
pubmed: 7706248
Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390:465–471. https://doi.org/10.1038/37284
doi: 10.1038/37284
pubmed: 9393997
Massagué J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791. https://doi.org/10.1146/annurev.biochem.67.1.753
doi: 10.1146/annurev.biochem.67.1.753
pubmed: 9759503
Massagué J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178. https://doi.org/10.1038/35043051
doi: 10.1038/35043051
pubmed: 11252892
Moustakas A, Heldin C-H (2005) Non-Smad TGF-beta signals. J Cell Sci 118:3573–3584. https://doi.org/10.1242/jcs.02554
doi: 10.1242/jcs.02554
pubmed: 16105881
Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139. https://doi.org/10.1038/cr.2008.328
doi: 10.1038/cr.2008.328
pubmed: 19114990
Mucsi I, Skorecki KL, Goldberg HJ (1996) Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-beta1 on gene expression. J Biol Chem 271:16567–16572
doi: 10.1074/jbc.271.28.16567
pubmed: 8663331
Hanafusa H, Ninomiya-Tsuji J, Masuyama N et al (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274:27161–27167
doi: 10.1074/jbc.274.38.27161
pubmed: 10480932
Rodríguez-Barbero A, Obreo J, Yuste L et al (2002) Transforming growth factor-beta1 induces collagen synthesis and accumulation via p38 mitogen-activated protein kinase (MAPK) pathway in cultured L(6)E(9) myoblasts. FEBS Lett 513:282–288
doi: 10.1016/S0014-5793(02)02337-2
pubmed: 11904165
Atfi A, Djelloul S, Chastre E et al (1997) Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor beta-mediated signaling. J Biol Chem 272:1429–1432
doi: 10.1074/jbc.272.3.1429
pubmed: 8999807
Yue J, Sun B, Liu G, Mulder KM (2004) Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor. J Cell Physiol 199:284–292. https://doi.org/10.1002/jcp.10469
doi: 10.1002/jcp.10469
pubmed: 15040011
Bakin AV, Tomlinson AK, Bhowmick NA et al (2000) Phosphatidylinositol 3-kinase function is required for transforming growth factor beta-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 275:36803–36810. https://doi.org/10.1074/jbc.M005912200
doi: 10.1074/jbc.M005912200
pubmed: 10969078
Ding Y, Kim JK, Kim SI et al (2010) TGF-{beta}1 protects against mesangial cell apoptosis via induction of autophagy. J Biol Chem 285:37909–37919. https://doi.org/10.1074/jbc.M109.093724
doi: 10.1074/jbc.M109.093724
pubmed: 20876581
pmcid: 2988393
Edlund S, Landström M, Heldin C-H, Aspenström P (2002) Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 13:902–914. https://doi.org/10.1091/mbc.01-08-0398
doi: 10.1091/mbc.01-08-0398
pubmed: 11907271
pmcid: 99608
Bhowmick NA, Ghiassi M, Bakin A et al (2001) Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 12:27–36. https://doi.org/10.1091/mbc.12.1.27
doi: 10.1091/mbc.12.1.27
pubmed: 11160820
pmcid: 30565
Ono K, Ohtomo T, Ninomiya-Tsuji J, Tsuchiya M (2003) A dominant negative TAK1 inhibits cellular fibrotic responses induced by TGF-beta. Biochem Biophys Res Commun 307:332–337
doi: 10.1016/S0006-291X(03)01207-5
pubmed: 12859960
Kim SI, Kwak JH, Zachariah M et al (2007) TGF-beta-activated kinase 1 and TAK1-binding protein 1 cooperate to mediate TGF-beta1-induced MKK3-p38 MAPK activation and stimulation of type I collagen. Am J Physiol Renal Physiol 292:F1471–F1478. https://doi.org/10.1152/ajprenal.00485.2006
doi: 10.1152/ajprenal.00485.2006
pubmed: 17299140
Hocevar BA, Prunier C, Howe PH (2005) Disabled-2 (Dab2) mediates transforming growth factor beta (TGFbeta)-stimulated fibronectin synthesis through TGFbeta-activated kinase 1 and activation of the JNK pathway. J Biol Chem 280:25920–25927. https://doi.org/10.1074/jbc.M501150200
doi: 10.1074/jbc.M501150200
pubmed: 15894542
Akira S (2003) Toll-like receptor signaling. J Biol Chem 278:38105–38108. https://doi.org/10.1074/jbc.R300028200
doi: 10.1074/jbc.R300028200
pubmed: 12893815
Yamaguchi K, Shirakabe K, Shibuya H et al (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270:2008–2011
doi: 10.1126/science.270.5244.2008
pubmed: 8533096
Shibuya H, Yamaguchi K, Shirakabe K et al (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272:1179–1182
doi: 10.1126/science.272.5265.1179
pubmed: 8638164
Irie T, Muta T, Takeshige K (2000) TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharide-stimulated macrophages. FEBS Lett 467:160–164
doi: 10.1016/S0014-5793(00)01146-7
pubmed: 10675530
Ninomiya-Tsuji J, Kishimoto K, Hiyama A et al (1999) The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256. https://doi.org/10.1038/18465
doi: 10.1038/18465
pubmed: 10094049
Sakurai H, Suzuki S, Kawasaki N et al (2003) Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J Biol Chem 278:36916–36923. https://doi.org/10.1074/jbc.M301598200
doi: 10.1074/jbc.M301598200
pubmed: 12842894
Shirakabe K, Yamaguchi K, Shibuya H et al (1997) TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 272:8141–8144
doi: 10.1074/jbc.272.13.8141
pubmed: 9079627
Shim J-H, Xiao C, Paschal AE et al (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681. https://doi.org/10.1101/gad.1360605
doi: 10.1101/gad.1360605
pubmed: 16260493
pmcid: 1283960
Smit L, Baas A, Kuipers J et al (2004) Wnt activates the Tak1/Nemo-like kinase pathway. J Biol Chem 279:17232–17240. https://doi.org/10.1074/jbc.M307801200
doi: 10.1074/jbc.M307801200
pubmed: 14960582
Dowdy SC, Mariani A, Janknecht R (2003) HER2/Neu- and TAK1-mediated up-regulation of the transforming growth factor beta inhibitor Smad7 via the ETS protein ER81. J Biol Chem 278:44377–44384. https://doi.org/10.1074/jbc.M307202200
doi: 10.1074/jbc.M307202200
pubmed: 12947087
Hoffmann A, Preobrazhenska O, Wodarczyk C et al (2005) Transforming growth factor-beta-activated kinase-1 (TAK1), a MAP3K, interacts with Smad proteins and interferes with osteogenesis in murine mesenchymal progenitors. J Biol Chem 280:27271–27283. https://doi.org/10.1074/jbc.M503368200
doi: 10.1074/jbc.M503368200
pubmed: 15911626
Sano Y, Harada J, Tashiro S et al (1999) ATF-2 is a common nuclear target of Smad and TAK1 pathways in transforming growth factor-beta signaling. J Biol Chem 274:8949–8957
doi: 10.1074/jbc.274.13.8949
pubmed: 10085140
Abécassis L, Rogier E, Vazquez A et al (2004) Evidence for a role of MSK1 in transforming growth factor-beta-mediated responses through p38alpha and Smad signaling pathways. J Biol Chem 279:30474–30479. https://doi.org/10.1074/jbc.M403294200
doi: 10.1074/jbc.M403294200
pubmed: 15133024
Sorrentino A, Thakur N, Grimsby S et al (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–1207. https://doi.org/10.1038/ncb1780
doi: 10.1038/ncb1780
pubmed: 18758450
Sayama K, Hanakawa Y, Nagai H et al (2006) Transforming growth factor-beta-activated kinase 1 is essential for differentiation and the prevention of apoptosis in epidermis. J Biol Chem 281:22013–22020. https://doi.org/10.1074/jbc.M601065200
doi: 10.1074/jbc.M601065200
pubmed: 16754690
Tan SH, Pal M, Tan MJ et al (2009) Regulation of cell proliferation and migration by TAK1 via transcriptional control of von Hippel-Lindau tumor suppressor. J Biol Chem 284:18047–18058. https://doi.org/10.1074/jbc.M109.002691
doi: 10.1074/jbc.M109.002691
pubmed: 19419968
pmcid: 2709347
Xie M, Zhang D, Dyck JRB et al (2006) A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci USA 103:17378–17383. https://doi.org/10.1073/pnas.0604708103
doi: 10.1073/pnas.0604708103
pubmed: 17085580
pmcid: 1859937
Sakurai H, Miyoshi H, Mizukami J, Sugita T (2000) Phosphorylation-dependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett 474:141–145
doi: 10.1016/S0014-5793(00)01588-X
pubmed: 10838074
Ishitani T, Takaesu G, Ninomiya-Tsuji J et al (2003) Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J 22:6277–6288. https://doi.org/10.1093/emboj/cdg605
doi: 10.1093/emboj/cdg605
pubmed: 14633987
pmcid: 291846
Cheung PCF, Nebreda AR, Cohen P (2004) TAB3, a new binding partner of the protein kinase TAK1. Biochem J 378:27–34. https://doi.org/10.1042/BJ20031794
doi: 10.1042/BJ20031794
pubmed: 14670075
pmcid: 1223947
Kim SI, Kwak JH, Na H-J et al (2009) Transforming growth factor-beta (TGF-beta1) activates TAK1 via TAB1-mediated autophosphorylation, independent of TGF-beta receptor kinase activity in mesangial cells. J Biol Chem 284:22285–22296. https://doi.org/10.1074/jbc.M109.007146
doi: 10.1074/jbc.M109.007146
pubmed: 19556242
pmcid: 2755952
Ono K, Ohtomo T, Sato S et al (2001) An evolutionarily conserved motif in the TAB1 C-terminal region is necessary for interaction with and activation of TAK1 MAPKKK. J Biol Chem 276:24396–24400. https://doi.org/10.1074/jbc.M102631200
doi: 10.1074/jbc.M102631200
pubmed: 11323434
Kishimoto K, Matsumoto K, Ninomiya-Tsuji J (2000) TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J Biol Chem 275:7359–7364
doi: 10.1074/jbc.275.10.7359
pubmed: 10702308
Singhirunnusorn P, Suzuki S, Kawasaki N et al (2005) Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J Biol Chem 280:7359–7368. https://doi.org/10.1074/jbc.M407537200
doi: 10.1074/jbc.M407537200
pubmed: 15590691
Inagaki M, Omori E, Kim J-Y et al (2008) TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. J Biol Chem 283:33080–33086. https://doi.org/10.1074/jbc.M807574200
doi: 10.1074/jbc.M807574200
pubmed: 18829460
pmcid: 2586273
Komatsu Y, Shibuya H, Takeda N et al (2002) Targeted disruption of the Table 1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech Dev 119:239–249
doi: 10.1016/S0925-4773(02)00391-X
pubmed: 12464436
Sanjo H, Takeda K, Tsujimura T et al (2003) TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol 23:1231–1238
doi: 10.1128/MCB.23.4.1231-1238.2003
pubmed: 12556483
pmcid: 141141
Kishida S, Sanjo H, Akira S et al (2005) TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. Genes Cells Devoted Mol Cell Mech 10:447–454. https://doi.org/10.1111/j.1365-2443.2005.00852.x
doi: 10.1111/j.1365-2443.2005.00852.x
Kanayama A, Seth RB, Sun L et al (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell 15:535–548. https://doi.org/10.1016/j.molcel.2004.08.008
doi: 10.1016/j.molcel.2004.08.008
pubmed: 15327770
Holtmann H, Enninga J, Kalble S et al (2001) The MAPK kinase kinase TAK1 plays a central role in coupling the interleukin-1 receptor to both transcriptional and RNA-targeted mechanisms of gene regulation. J Biol Chem 276:3508–3516. https://doi.org/10.1074/jbc.M004376200
doi: 10.1074/jbc.M004376200
pubmed: 11050078
Sakurai H, Nishi A, Sato N et al (2002) TAK1-TAB1 fusion protein: a novel constitutively active mitogen-activated protein kinase kinase kinase that stimulates AP-1 and NF-kappaB signaling pathways. Biochem Biophys Res Commun 297:1277–1281
doi: 10.1016/S0006-291X(02)02379-3
pubmed: 12372426
Takaesu G, Kishida S, Hiyama A et al (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649–658
doi: 10.1016/S1097-2765(00)80244-0
pubmed: 10882101
Wang C, Deng L, Hong M et al (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351. https://doi.org/10.1038/35085597
doi: 10.1038/35085597
pubmed: 11460167
Ea C-K, Deng L, Xia Z-P et al (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257. https://doi.org/10.1016/j.molcel.2006.03.026
doi: 10.1016/j.molcel.2006.03.026
pubmed: 16603398
Sicheri F, Kuriyan J (1997) Structures of Src-family tyrosine kinases. Curr Opin Struct Biol 7:777–785
doi: 10.1016/S0959-440X(97)80146-7
pubmed: 9434895
Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
doi: 10.1126/science.3291115
pubmed: 3291115
Brown K, Vial SCM, Dedi N et al (2005) Structural basis for the interaction of TAK1 kinase with its activating protein TAB1. J Mol Biol 354:1013–1020. https://doi.org/10.1016/j.jmb.2005.09.098
doi: 10.1016/j.jmb.2005.09.098
pubmed: 16289117
Pathak S, Borodkin VS, Albarbarawi O et al (2012) O-glcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J 31:1394–1404. https://doi.org/10.1038/emboj.2012.8
doi: 10.1038/emboj.2012.8
pubmed: 22307082
pmcid: 3321193
Chen YG, Hata A, Lo RS et al (1998) Determinants of specificity in TGF-beta signal transduction. Genes Dev 12:2144–2152
doi: 10.1101/gad.12.14.2144
pubmed: 9679059
pmcid: 317013
Wu G, Chen YG, Ozdamar B et al (2000) Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science 287:92–97
doi: 10.1126/science.287.5450.92
pubmed: 10615055
Reinstein E, Ciechanover A (2006) Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med 145:676–684
doi: 10.7326/0003-4819-145-9-200611070-00010
pubmed: 17088581
Yamashita M, Fatyol K, Jin C et al (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–924. https://doi.org/10.1016/j.molcel.2008.09.002
doi: 10.1016/j.molcel.2008.09.002
pubmed: 18922473
pmcid: 2621323
Mu Y, Sundar R, Thakur N et al (2011) TRAF6 ubiquitinates TGFβ type I receptor to promote its cleavage and nuclear translocation in cancer. Nat Commun 2:330. https://doi.org/10.1038/ncomms1332
doi: 10.1038/ncomms1332
pubmed: 21629263
Fan Y, Yu Y, Shi Y et al (2010) Lysine 63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKK/NF-kappaB and JNK/AP-1 activation. J Biol Chem 285:5347–5360. https://doi.org/10.1074/jbc.M109.076976
doi: 10.1074/jbc.M109.076976
pubmed: 20038579
Fan Y, Yu Y, Mao R et al (2011) TAK1 Lys-158 but not Lys-209 is required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-κB activation. Cell Signal 23:660–665. https://doi.org/10.1016/j.cellsig.2010.11.017
doi: 10.1016/j.cellsig.2010.11.017
pubmed: 21130870
Mao R, Fan Y, Mou Y et al (2011) TAK1 lysine 158 is required for TGF-β-induced TRAF6-mediated Smad-independent IKK/NF-κB and JNK/AP-1 activation. Cell Signal 23:222–227. https://doi.org/10.1016/j.cellsig.2010.09.006
doi: 10.1016/j.cellsig.2010.09.006
pubmed: 20837137
Sato S, Sanjo H, Takeda K et al (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 6:1087–1095. https://doi.org/10.1038/ni1255
doi: 10.1038/ni1255
pubmed: 16186825
Qin J, Jiang Z, Qian Y et al (2004) IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J Biol Chem 279:26748–26753. https://doi.org/10.1074/jbc.M400785200
doi: 10.1074/jbc.M400785200
pubmed: 15084582
Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430:257–263. https://doi.org/10.1038/nature02761
doi: 10.1038/nature02761
pubmed: 15241424
Arend WP (2002) The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 13:323–340
doi: 10.1016/S1359-6101(02)00020-5
pubmed: 12220547
Zheng CF, Guan KL (1994) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13:1123–1131
doi: 10.1002/j.1460-2075.1994.tb06361.x
pubmed: 8131746
pmcid: 394921
Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158
doi: 10.1016/S0092-8674(00)81092-2
pubmed: 8612268
Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284:309–313
doi: 10.1126/science.284.5412.309
pubmed: 10195894
Mercurio F, Zhu H, Murray BW et al (1997) IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278:860–866
doi: 10.1126/science.278.5339.860
pubmed: 9346484
Scholz R, Sidler CL, Thali RF et al (2010) Autoactivation of transforming growth factor beta-activated kinase 1 is a sequential bimolecular process. J Biol Chem 285:25753–25766. https://doi.org/10.1074/jbc.M109.093468
doi: 10.1074/jbc.M109.093468
pubmed: 20538596
pmcid: 2919138
Yu Y, Ge N, Xie M et al (2008) Phosphorylation of Thr-178 and Thr-184 in the TAK1 T-loop is required for interleukin (IL)-1-mediated optimal NFkappaB and AP-1 activation as well as IL-6 gene expression. J Biol Chem 283:24497–24505. https://doi.org/10.1074/jbc.M802825200
doi: 10.1074/jbc.M802825200
pubmed: 18617512
pmcid: 2528992
Kim SI, Kwak JH, Wang L, Choi ME (2008) Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J Biol Chem 283:10753–10763. https://doi.org/10.1074/jbc.M801263200
doi: 10.1074/jbc.M801263200
pubmed: 18299321
pmcid: 2447645
Prickett TD, Ninomiya-Tsuji J, Broglie P et al (2008) TAB4 stimulates TAK1-TAB1 phosphorylation and binds polyubiquitin to direct signaling to NF-kappaB. J Biol Chem 283:19245–19254. https://doi.org/10.1074/jbc.M800943200
doi: 10.1074/jbc.M800943200
pubmed: 18456659
pmcid: 2443674
Kobayashi Y, Mizoguchi T, Take I et al (2005) Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biol Chem 280:11395–11403. https://doi.org/10.1074/jbc.M411189200
doi: 10.1074/jbc.M411189200
pubmed: 15647289
Pearson G, Robinson F, Beers Gibson T et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183. https://doi.org/10.1210/edrv.22.2.0428
doi: 10.1210/edrv.22.2.0428
pubmed: 11294822
Siow YL, Kalmar GB, Sanghera JS et al (1997) Identification of two essential phosphorylated threonine residues in the catalytic domain of Mekk1. Indirect activation by Pak3 and protein kinase C. J Biol Chem 272:7586–7594
doi: 10.1074/jbc.272.12.7586
pubmed: 9065412
Posas F, Saito H (1998) Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J 17:1385–1394. https://doi.org/10.1093/emboj/17.5.1385
doi: 10.1093/emboj/17.5.1385
pubmed: 9482735
pmcid: 1170486
Deak JC, Templeton DJ (1997) Regulation of the activity of MEK kinase 1 (MEKK1) by autophosphorylation within the kinase activation domain. Biochem J 322(Pt 1):185–192
doi: 10.1042/bj3220185
pubmed: 9078260
pmcid: 1218175
English JM, Vanderbilt CA, Xu S et al (1995) Isolation of MEK5 and differential expression of alternatively spliced forms. J Biol Chem 270:28897–28902
doi: 10.1074/jbc.270.48.28897
pubmed: 7499418
Yao Z, Zhou G, Wang XS et al (1999) A novel human STE20-related protein kinase, HGK, that specifically activates the c-Jun N-terminal kinase signaling pathway. J Biol Chem 274:2118–2125
doi: 10.1074/jbc.274.4.2118
pubmed: 9890973
Ouyang C, Nie L, Gu M et al (2014) Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) activation requires phosphorylation of serine 412 by protein kinase A catalytic subunit α (PKACα) and X-linked protein kinase (PRKX). J Biol Chem 289:24226–24237. https://doi.org/10.1074/jbc.M114.559963
doi: 10.1074/jbc.M114.559963
pubmed: 25028512
pmcid: 4148853
Hanada M, Ninomiya-Tsuji J, Komaki K et al (2001) Regulation of the TAK1 signaling pathway by protein phosphatase 2C. J Biol Chem 276:5753–5759. https://doi.org/10.1074/jbc.M007773200
doi: 10.1074/jbc.M007773200
pubmed: 11104763
Li MG, Katsura K, Nomiyama H et al (2003) Regulation of the interleukin-1-induced signaling pathways by a novel member of the protein phosphatase 2C family (PP2Cepsilon). J Biol Chem 278:12013–12021. https://doi.org/10.1074/jbc.M211474200
doi: 10.1074/jbc.M211474200
pubmed: 12556533
Kajino T, Ren H, Iemura S-I et al (2006) Protein phosphatase 6 down-regulates TAK1 kinase activation in the IL-1 signaling pathway. J Biol Chem 281:39891–39896. https://doi.org/10.1074/jbc.M608155200
doi: 10.1074/jbc.M608155200
pubmed: 17079228
Broglie P, Matsumoto K, Akira S et al (2010) Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem 285:2333–2339. https://doi.org/10.1074/jbc.M109.090522
doi: 10.1074/jbc.M109.090522
pubmed: 19955178
Takaesu G, Ninomiya-Tsuji J, Kishida S et al (2001) Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol Cell Biol 21:2475–2484. https://doi.org/10.1128/MCB.21.7.2475-2484.2001
doi: 10.1128/MCB.21.7.2475-2484.2001
pubmed: 11259596
pmcid: 86880
Cheung PCF, Campbell DG, Nebreda AR, Cohen P (2003) Feedback control of the protein kinase TAK1 by SAPK2a/p38alpha. EMBO J 22:5793–5805. https://doi.org/10.1093/emboj/cdg552
doi: 10.1093/emboj/cdg552
pubmed: 14592977
pmcid: 275409
Courtois G (2008) Tumor suppressor CYLD: negative regulation of NF-kappaB signaling and more. Cell Mol Life Sci CMLS 65:1123–1132. https://doi.org/10.1007/s00018-007-7465-4
doi: 10.1007/s00018-007-7465-4
pubmed: 18193168
Ahmed N, Zeng M, Sinha I et al (2011) The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 12:1176–1183. https://doi.org/10.1038/ni.2157
doi: 10.1038/ni.2157
pubmed: 22057290
pmcid: 3219826
Fan Y, Shi Y, Liu S et al (2012) Lys48-linked TAK1 polyubiquitination at lysine-72 downregulates TNFα-induced NF-κB activation via mediating TAK1 degradation. Cell Signal 24:1381–1389. https://doi.org/10.1016/j.cellsig.2012.02.017
doi: 10.1016/j.cellsig.2012.02.017
pubmed: 22406003
pmcid: 3580185
Ruland J (2011) Return to homeostasis: downregulation of NF-κB responses. Nat Immunol 12:709–714. https://doi.org/10.1038/ni.2055
doi: 10.1038/ni.2055
pubmed: 21772279
Fan Y-H, Yu Y, Mao R-F et al (2011) USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation. Cell Death Differ 18:1547–1560. https://doi.org/10.1038/cdd.2011.11
doi: 10.1038/cdd.2011.11
pubmed: 21331078
pmcid: 3136563
Beg ZH, Allmann DW, Gibson DM (1973) Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem Biophys Res Commun 54:1362–1369
doi: 10.1016/0006-291X(73)91137-6
pubmed: 4356818
Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223:217–222
doi: 10.1016/0014-5793(87)80292-2
pubmed: 2889619
Carlson CA, Kim KH (1974) Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. Arch Biochem Biophys 164:478–489
doi: 10.1016/0003-9861(74)90058-7
pubmed: 4156633
Kemp BE, Stapleton D, Campbell DJ et al (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31:162–168. https://doi.org/10.1042/bst0310162
doi: 10.1042/bst0310162
pubmed: 12546677
Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25. https://doi.org/10.1016/j.cmet.2004.12.003
doi: 10.1016/j.cmet.2004.12.003
pubmed: 16054041
Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:556–566. https://doi.org/10.1016/j.cmet.2013.08.019
doi: 10.1016/j.cmet.2013.08.019
pubmed: 24093679
pmcid: 3791399
Hardie DG, Carling D (1997) The AMP-activated protein kinase–fuel gauge of the mammalian cell? Eur J Biochem 246:259–273
doi: 10.1111/j.1432-1033.1997.00259.x
pubmed: 9208914
Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855. https://doi.org/10.1146/annurev.biochem.67.1.821
doi: 10.1146/annurev.biochem.67.1.821
pubmed: 9759505
Hardie DG, Salt IP, Hawley SA, Davies SP (1999) AMP-activated protein kinase: an ultrasensitive system for monitoring cellular energy charge. Biochem J 338(Pt 3):717–722
doi: 10.1042/bj3380717
pubmed: 10051444
pmcid: 1220108
Xiao B, Sanders MJ, Underwood E et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233. https://doi.org/10.1038/nature09932
doi: 10.1038/nature09932
pubmed: 21399626
pmcid: 3078618
Davies SP, Helps NR, Cohen PT, Hardie DG (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 377:421–425. https://doi.org/10.1016/0014-5793(95)01368-7
doi: 10.1016/0014-5793(95)01368-7
pubmed: 8549768
Oakhill JS, Steel R, Chen Z-P et al (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435. https://doi.org/10.1126/science.1200094
doi: 10.1126/science.1200094
pubmed: 21680840
Hawley SA, Selbert MA, Goldstein EG et al (1995) 5′-AMP activates the AMP-activated protein kinase cascade, and Ca
doi: 10.1074/jbc.270.45.27186
pubmed: 7592975
Hawley SA, Davison M, Woods A et al (1996) Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887
doi: 10.1074/jbc.271.44.27879
pubmed: 8910387
Ponticos M, Lu QL, Morgan JE et al (1998) Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle. EMBO J 17:1688–1699. https://doi.org/10.1093/emboj/17.6.1688
doi: 10.1093/emboj/17.6.1688
pubmed: 9501090
pmcid: 1170516
Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785. https://doi.org/10.1038/nrm2249
doi: 10.1038/nrm2249
pubmed: 17712357
Suzuki A, Okamoto S, Lee S et al (2007) Leptin stimulates fatty acid oxidation and peroxisome proliferator-activated receptor alpha gene expression in mouse C2C12 myoblasts by changing the subcellular localization of the alpha2 form of AMP-activated protein kinase. Mol Cell Biol 27:4317–4327. https://doi.org/10.1128/MCB.02222-06
doi: 10.1128/MCB.02222-06
pubmed: 17420279
pmcid: 1900064
Andersson U, Filipsson K, Abbott CR et al (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279:12005–12008. https://doi.org/10.1074/jbc.C300557200
doi: 10.1074/jbc.C300557200
pubmed: 14742438
Yamauchi T, Kamon J, Minokoshi Y et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295. https://doi.org/10.1038/nm788
doi: 10.1038/nm788
pubmed: 12368907
Minokoshi Y, Alquier T, Furukawa N et al (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428:569–574. https://doi.org/10.1038/nature02440
doi: 10.1038/nature02440
pubmed: 15058305
Fryer LGD, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232. https://doi.org/10.1074/jbc.M202489200
doi: 10.1074/jbc.M202489200
pubmed: 11994296
Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180
doi: 10.1126/science.3526554
pubmed: 3526554
Woods A, Munday MR, Scott J et al (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269:19509–19515
pubmed: 7913470
Mitchelhill KI, Stapleton D, Gao G et al (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269:2361–2364
pubmed: 7905477
Halford NG, Hey S, Jhurreea D et al (2004) Highly conserved protein kinases involved in the regulation of carbon and amino acid metabolism. J Exp Bot 55:35–42. https://doi.org/10.1093/jxb/erh019
doi: 10.1093/jxb/erh019
pubmed: 14645392
Jiang R, Carlson M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17:2099–2106
doi: 10.1128/MCB.17.4.2099
pubmed: 9121458
pmcid: 232057
Nayak V, Zhao K, Wyce A et al (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Struct Lond Engl 1993 14:477–485. https://doi.org/10.1016/j.str.2005.12.008
doi: 10.1016/j.str.2005.12.008
Vincent O, Townley R, Kuchin S, Carlson M (2001) Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev 15:1104–1114. https://doi.org/10.1101/gad.879301
doi: 10.1101/gad.879301
pubmed: 11331606
pmcid: 312685
Hong S-P, Leiper FC, Woods A et al (2003) Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 100:8839–8843. https://doi.org/10.1073/pnas.1533136100
doi: 10.1073/pnas.1533136100
pubmed: 12847291
pmcid: 166400
Nath N, McCartney RR, Schmidt MC (2003) Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol 23:3909–3917
doi: 10.1128/MCB.23.11.3909-3917.2003
pubmed: 12748292
pmcid: 155224
Sutherland CM, Hawley SA, McCartney RR et al (2003) Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol CB 13:1299–1305
doi: 10.1016/S0960-9822(03)00459-7
pubmed: 12906789
Shaw RJ, Kosmatka M, Bardeesy N et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335. https://doi.org/10.1073/pnas.0308061100
doi: 10.1073/pnas.0308061100
pubmed: 14985505
pmcid: 373461
Woods A, Dickerson K, Heath R et al (2005) Ca
doi: 10.1016/j.cmet.2005.06.005
pubmed: 16054096
Hong S-P, Momcilovic M, Carlson M (2005) Function of mammalian LKB1 and Ca
doi: 10.1074/jbc.M501887200
pubmed: 15831494
Momcilovic M, Hong S-P, Carlson M (2006) Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem 281:25336–25343. https://doi.org/10.1074/jbc.M604399200
doi: 10.1074/jbc.M604399200
pubmed: 16835226
Fujii N, Jessen N, Goodyear LJ (2006) AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab 291:E867–E877. https://doi.org/10.1152/ajpendo.00207.2006
doi: 10.1152/ajpendo.00207.2006
pubmed: 16822958
Suzuki A, Kusakai G, Kishimoto A et al (2004) IGF-1 phosphorylates AMPK-alpha subunit in ATM-dependent and LKB1-independent manner. Biochem Biophys Res Commun 324:986–992. https://doi.org/10.1016/j.bbrc.2004.09.145
doi: 10.1016/j.bbrc.2004.09.145
pubmed: 15485651
Li J, Miller EJ, Ninomiya-Tsuji J et al (2005) AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ Res 97:872–879. https://doi.org/10.1161/01.RES.0000187458.77026.10
doi: 10.1161/01.RES.0000187458.77026.10
pubmed: 16179588
Scarlatti F, Granata R, Meijer AJ, Codogno P (2009) Does autophagy have a license to kill mammalian cells? Cell Death Differ 16:12–20. https://doi.org/10.1038/cdd.2008.101
doi: 10.1038/cdd.2008.101
pubmed: 18600232
Denton D, Nicolson S, Kumar S (2012) Cell death by autophagy: facts and apparent artefacts. Cell Death Differ 19:87–95. https://doi.org/10.1038/cdd.2011.146
doi: 10.1038/cdd.2011.146
pubmed: 22052193
Herrero-Martín G, Høyer-Hansen M, García-García C et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685. https://doi.org/10.1038/emboj.2009.8
doi: 10.1038/emboj.2009.8
pubmed: 19197243
pmcid: 2666037
Kim J, Kundu M, Viollet B, Guan K-L (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141. https://doi.org/10.1038/ncb2152
doi: 10.1038/ncb2152
pubmed: 21258367
pmcid: 3987946
Inoki K, Zhu T, Guan K-L (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590
doi: 10.1016/S0092-8674(03)00929-2
pubmed: 14651849
Gwinn DM, Shackelford DB, Egan DF et al (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226. https://doi.org/10.1016/j.molcel.2008.03.003
doi: 10.1016/j.molcel.2008.03.003
pubmed: 18439900
pmcid: 2674027
Shin JH, Min S-H, Kim S-J et al (2013) TAK1 regulates autophagic cell death by suppressing the phosphorylation of p70 S6 kinase 1. Sci Rep 3:1561. https://doi.org/10.1038/srep01561
doi: 10.1038/srep01561
pubmed: 23532117
pmcid: 3609023
Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7:167–178. https://doi.org/10.1016/j.devcel.2004.07.009
doi: 10.1016/j.devcel.2004.07.009
pubmed: 15296714
Daido S, Yamamoto A, Fujiwara K et al (2005) Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res 65:4368–4375. https://doi.org/10.1158/0008-5472.CAN-04-4202
doi: 10.1158/0008-5472.CAN-04-4202
pubmed: 15899829
Armour SM, Baur JA, Hsieh SN et al (2009) Inhibition of mammalian S6 kinase by resveratrol suppresses autophagy. Aging 1:515–528. https://doi.org/10.18632/aging.100056
doi: 10.18632/aging.100056
pubmed: 20157535
pmcid: 2806030
Hu H, Chai Y, Wang L et al (2009) Pentagalloylglucose induces autophagy and caspase-independent programmed deaths in human PC-3 and mouse TRAMP-C2 prostate cancer cells. Mol Cancer Ther 8:2833–2843. https://doi.org/10.1158/1535-7163.MCT-09-0288
doi: 10.1158/1535-7163.MCT-09-0288
pubmed: 19825802
pmcid: 2838500
Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285:14071–14077. https://doi.org/10.1074/jbc.R109.094003
doi: 10.1074/jbc.R109.094003
pubmed: 20231296
pmcid: 2863215
Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35. https://doi.org/10.1038/nrm3025
doi: 10.1038/nrm3025
pubmed: 21157483
Alessi DR, Pearce LR, García-Martínez JM (2009) New insights into mTOR signaling: mTORC2 and beyond. Sci Signal 2:pe27. https://doi.org/10.1126/scisignal.267pe27
doi: 10.1126/scisignal.267pe27
pubmed: 19383978
Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484. https://doi.org/10.1016/j.cell.2006.01.016
doi: 10.1016/j.cell.2006.01.016
pubmed: 16469695
Kim D-H, Sarbassov DD, Ali SM et al (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11:895–904
doi: 10.1016/S1097-2765(03)00114-X
pubmed: 12718876
Kim D-H, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175
doi: 10.1016/S0092-8674(02)00808-5
pubmed: 12150925
Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189
doi: 10.1016/S0092-8674(02)00833-4
pubmed: 12150926
Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6:729–734. https://doi.org/10.1038/nrc1974
doi: 10.1038/nrc1974
pubmed: 16915295
Hosokawa N, Hara T, Kaizuka T et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991. https://doi.org/10.1091/mbc.e08-12-1248
doi: 10.1091/mbc.e08-12-1248
pubmed: 19211835
pmcid: 2663915
Sarbassov DD, Ali SM, Kim D-H et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol CB 14:1296–1302. https://doi.org/10.1016/j.cub.2004.06.054
doi: 10.1016/j.cub.2004.06.054
pubmed: 15268862
Pearce LR, Huang X, Boudeau J et al (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405:513–522. https://doi.org/10.1042/BJ20070540
doi: 10.1042/BJ20070540
pubmed: 17461779
pmcid: 2267312
Yang Q, Inoki K, Ikenoue T, Guan K-L (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20:2820–2832. https://doi.org/10.1101/gad.1461206
doi: 10.1101/gad.1461206
pubmed: 17043309
pmcid: 1619946
Sancak Y, Thoreen CC, Peterson TR et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25:903–915. https://doi.org/10.1016/j.molcel.2007.03.003
doi: 10.1016/j.molcel.2007.03.003
pubmed: 17386266
Khanna N, Fang Y, Yoon M-S, Chen J (2013) XPLN is an endogenous inhibitor of mTORC2. Proc Natl Acad Sci USA 110:15979–15984. https://doi.org/10.1073/pnas.1310434110
doi: 10.1073/pnas.1310434110
pubmed: 24043828
pmcid: 3791717
Bai X, Ma D, Liu A et al (2007) Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 318:977–980. https://doi.org/10.1126/science.1147379
doi: 10.1126/science.1147379
pubmed: 17991864
Peterson TR, Laplante M, Thoreen CC et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137:873–886. https://doi.org/10.1016/j.cell.2009.03.046
doi: 10.1016/j.cell.2009.03.046
pubmed: 19446321
pmcid: 2758791
Nojima H, Tokunaga C, Eguchi S et al (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278:15461–15464. https://doi.org/10.1074/jbc.C200665200
doi: 10.1074/jbc.C200665200
pubmed: 12604610
Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol CB 12:632–639
doi: 10.1016/S0960-9822(02)00762-5
pubmed: 11967149
Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol CB 13:797–806
doi: 10.1016/S0960-9822(03)00329-4
pubmed: 12747827
Choi KM, McMahon LP, Lawrence JC (2003) Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor. J Biol Chem 278:19667–19673. https://doi.org/10.1074/jbc.M301142200
doi: 10.1074/jbc.M301142200
pubmed: 12665511
Weng QP, Kozlowski M, Belham C et al (1998) Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J Biol Chem 273:16621–16629
doi: 10.1074/jbc.273.26.16621
pubmed: 9632736
Wang L, Rhodes CJ, Lawrence JC (2006) Activation of mammalian target of rapamycin (mTOR) by insulin is associated with stimulation of 4EBP1 binding to dimeric mTOR complex 1. J Biol Chem 281:24293–24303. https://doi.org/10.1074/jbc.M603566200
doi: 10.1074/jbc.M603566200
pubmed: 16798736
Fonseca BD, Smith EM, Lee VH-Y et al (2007) PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 282:24514–24524. https://doi.org/10.1074/jbc.M704406200
doi: 10.1074/jbc.M704406200
pubmed: 17604271
Oshiro N, Takahashi R, Yoshino K et al (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329–20339. https://doi.org/10.1074/jbc.M702636200
doi: 10.1074/jbc.M702636200
pubmed: 17517883
Burnett PE, Barrow RK, Cohen NA et al (1998) RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci USA 95:1432–1437
doi: 10.1073/pnas.95.4.1432
pubmed: 9465032
pmcid: 19032
Chung J, Kuo CJ, Crabtree GR, Blenis J (1992) Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69:1227–1236
doi: 10.1016/0092-8674(92)90643-Q
pubmed: 1377606
Kuo CJ, Chung J, Fiorentino DF et al (1992) Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358:70–73. https://doi.org/10.1038/358070a0
doi: 10.1038/358070a0
pubmed: 1614535
Price DJ, Grove JR, Calvo V et al (1992) Rapamycin-induced inhibition of the 70-kilodalton S6 protein kinase. Science 257:973–977
doi: 10.1126/science.1380182
pubmed: 1380182
Ali SM, Sabatini DM (2005) Structure of S6 kinase 1 determines whether raptor-mTOR or rictor-mTOR phosphorylates its hydrophobic motif site. J Biol Chem 280:19445–19448. https://doi.org/10.1074/jbc.C500125200
doi: 10.1074/jbc.C500125200
pubmed: 15809305
Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348. https://doi.org/10.1016/j.tibs.2006.04.003
doi: 10.1016/j.tibs.2006.04.003
pubmed: 16679021
Kozma SC, Thomas G (2002) Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. BioEssays. News Rev Mol Cell Dev Biol 24:65–71. https://doi.org/10.1002/bies.10031
doi: 10.1002/bies.10031
Jung CH, Ro S-H, Cao J et al (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017
doi: 10.1016/j.febslet.2010.01.017
pubmed: 20083114
pmcid: 2846630
Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462. https://doi.org/10.1016/j.biocel.2004.02.002
doi: 10.1016/j.biocel.2004.02.002
pubmed: 15325584
Blommaart EF, Luiken JJ, Blommaart PJ et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 270:2320–2326
doi: 10.1074/jbc.270.5.2320
pubmed: 7836465
Iwamaru A, Kondo Y, Iwado E et al (2007) Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 26:1840–1851. https://doi.org/10.1038/sj.onc.1209992
doi: 10.1038/sj.onc.1209992
pubmed: 17001313
Kim SY, Baik K-H, Baek K-H et al (2014) S6K1 negatively regulates TAK1 activity in the toll-like receptor signaling pathway. Mol Cell Biol 34:510–521. https://doi.org/10.1128/MCB.01225-13
doi: 10.1128/MCB.01225-13
pubmed: 24277938
pmcid: 3911500
Lu G, Kang YJ, Han J et al (2006) TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling. J Biol Chem 281:6087–6095. https://doi.org/10.1074/jbc.M507610200
doi: 10.1074/jbc.M507610200
pubmed: 16407200
Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362. https://doi.org/10.1016/j.cell.2008.01.020
doi: 10.1016/j.cell.2008.01.020
pubmed: 18267068
Sakurai H (2012) Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 33:522–530. https://doi.org/10.1016/j.tips.2012.06.007
doi: 10.1016/j.tips.2012.06.007
pubmed: 22795313
Mihaly SR, Ninomiya-Tsuji J, Morioka S (2014) TAK1 control of cell death. Cell Death Differ 21:1667–1676. https://doi.org/10.1038/cdd.2014.123
doi: 10.1038/cdd.2014.123
pubmed: 25146924
pmcid: 4211365
Xia Y, Shen S, Verma IM (2014) NF-κB, an active player in human cancers. Cancer Immunol Res 2:823–830. https://doi.org/10.1158/2326-6066.CIR-14-0112
doi: 10.1158/2326-6066.CIR-14-0112
pubmed: 25187272
pmcid: 4155602
Kimura N, Matsuo R, Shibuya H et al (2000) BMP2-induced apoptosis is mediated by activation of the TAK1-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem 275:17647–17652. https://doi.org/10.1074/jbc.M908622199
doi: 10.1074/jbc.M908622199
pubmed: 10748100
Li P, Furusawa Y, Wei Z-L et al (2013) TAK1 promotes cell survival by TNFAIP3 and IL-8 dependent and NF-κB independent pathway in HeLa cells exposed to heat stress. Int J Hyperth Off J Eur Soc Hyperthermic Oncol North Am Hyperth Group 29:688–695. https://doi.org/10.3109/02656736.2013.828104
doi: 10.3109/02656736.2013.828104
Fan Y, Cheng J, Vasudevan SA et al (2013) TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy. Apoptosis Int J Program Cell Death 18:1224–1234. https://doi.org/10.1007/s10495-013-0864-0
doi: 10.1007/s10495-013-0864-0
Ashkenazi A, Salvesen G (2014) Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol 30:337–356. https://doi.org/10.1146/annurev-cellbio-100913-013226
doi: 10.1146/annurev-cellbio-100913-013226
pubmed: 25150011
Cho YS, Challa S, Moquin D et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123. https://doi.org/10.1016/j.cell.2009.05.037
doi: 10.1016/j.cell.2009.05.037
pubmed: 19524513
pmcid: 2727676
Tait SWG, Oberst A, Quarato G et al (2013) Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep 5:878–885. https://doi.org/10.1016/j.celrep.2013.10.034
doi: 10.1016/j.celrep.2013.10.034
pubmed: 24268776
pmcid: 4005921
He S, Wang L, Miao L et al (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111. https://doi.org/10.1016/j.cell.2009.05.021
doi: 10.1016/j.cell.2009.05.021
pubmed: 19524512
Zhang D-W, Shao J, Lin J et al (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325:332–336. https://doi.org/10.1126/science.1172308
doi: 10.1126/science.1172308
pubmed: 19498109
Guo X, Yin H, Chen Y et al (2016) TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints. Cell Death Dis 7:e2381. https://doi.org/10.1038/cddis.2016.294
doi: 10.1038/cddis.2016.294
pubmed: 27685625
pmcid: 5059887
Arslan S, Scheidereit C (2011) The prevalence of TNFα-induced necrosis over apoptosis is determined by TAK1-RIP1 interplay. PLoS ONE 6:e26069. https://doi.org/10.1371/journal.pone.0026069
doi: 10.1371/journal.pone.0026069
pubmed: 22016814