Secondary Structure and Contact Guided Differential Evolution for Protein Structure Prediction.


Journal

IEEE/ACM transactions on computational biology and bioinformatics
ISSN: 1557-9964
Titre abrégé: IEEE/ACM Trans Comput Biol Bioinform
Pays: United States
ID NLM: 101196755

Informations de publication

Date de publication:
Historique:
pubmed: 9 10 2018
medline: 27 4 2021
entrez: 9 10 2018
Statut: ppublish

Résumé

Ab initio protein tertiary structure prediction is one of the long-standing problems in structural bioinformatics. With the help of residue-residue contact and secondary structure prediction information, the accuracy of ab initio structure prediction can be enhanced. In this study, an improved differential evolution with secondary structure and residue-residue contact information referred to as SCDE is proposed for protein structure prediction. In SCDE, two score models based on secondary structure and contact information are proposed, and two selection strategies, namely, secondary structure-based selection strategy and contact-based selection strategy, are designed to guide conformation space search. A probability distribution function is designed to balance these two selection strategies. Experimental results on a benchmark dataset with 28 proteins and four free model targets in CASP12 demonstrate that the proposed SCDE is effective and efficient.

Identifiants

pubmed: 30295627
doi: 10.1109/TCBB.2018.2873691
doi:

Substances chimiques

Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1068-1081

Auteurs

Articles similaires

Selecting optimal software code descriptors-The case of Java.

Yegor Bugayenko, Zamira Kholmatova, Artem Kruglov et al.
1.00
Software Algorithms Programming Languages
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
1.00
Humans Magnetic Resonance Imaging Brain Infant, Newborn Infant, Premature
Humans Colorectal Neoplasms Biomarkers, Tumor Prognosis Gene Expression Regulation, Neoplastic

Classifications MeSH