Molecular alterations associated with metastases of solid pseudopapillary neoplasms of the pancreas.
Adolescent
Adult
Biomarkers, Tumor
/ analysis
Carcinoma, Papillary
/ chemistry
Child
DNA Copy Number Variations
Epigenesis, Genetic
Female
Gene Dosage
Gene Expression Regulation, Neoplastic
Genetic Predisposition to Disease
Glucose Transporter Type 1
/ genetics
Histone Demethylases
/ genetics
Humans
Male
Middle Aged
Mixed Function Oxygenases
/ genetics
Mutation
Pancreatic Neoplasms
/ chemistry
Phenotype
Proto-Oncogene Proteins
/ genetics
Tumor Suppressor Proteins
/ genetics
Ubiquitin Thiolesterase
/ genetics
Young Adult
beta Catenin
/ genetics
Solid pseudopapillary neoplasms
epigenetic regulators
hypoxia
metastasis
pancreas
Journal
The Journal of pathology
ISSN: 1096-9896
Titre abrégé: J Pathol
Pays: England
ID NLM: 0204634
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
20
03
2018
revised:
13
09
2018
accepted:
04
10
2018
pubmed:
12
10
2018
medline:
20
12
2019
entrez:
12
10
2018
Statut:
ppublish
Résumé
Solid pseudopapillary neoplasms (SPN) of the pancreas are rare, low-grade malignant neoplasms that metastasise to the liver or peritoneum in 10-15% of cases. They almost invariably present somatic activating mutations of CTNNB1. No comprehensive molecular characterisation of metastatic disease has been conducted to date. We performed whole-exome sequencing and copy-number variation (CNV) analysis of 10 primary SPN and comparative sequencing of five matched primary/metastatic tumour specimens by high-coverage targeted sequencing of 409 genes. In addition to CTNNB1-activating mutations, we found inactivating mutations of epigenetic regulators (KDM6A, TET1, BAP1) associated with metastatic disease. Most of these alterations were shared between primary and metastatic lesions, suggesting that they occurred before dissemination. Differently from mutations, the majority of CNVs were not shared among lesions from the same patients and affected genes involved in metabolic and pro-proliferative pathways. Immunostaining of 27 SPNs showed that loss or reduction of KDM6A and BAP1 expression was significantly enriched in metastatic SPNs. Consistent with an increased transcriptional response to hypoxia in pancreatic adenocarcinomas bearing KDM6A inactivation, we showed that mutation or reduced KDM6A expression in SPNs is associated with increased expression of the HIF1α-regulated protein GLUT1 at both primary and metastatic sites. Our results suggest that BAP1 and KDM6A function is a barrier to the development of metastasis in a subset of SPNs, which might open novel avenues for the treatment of this disease. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Identifiants
pubmed: 30306561
doi: 10.1002/path.5180
pmc: PMC6588017
doi:
Substances chimiques
BAP1 protein, human
0
Biomarkers, Tumor
0
CTNNB1 protein, human
0
Glucose Transporter Type 1
0
Proto-Oncogene Proteins
0
SLC2A1 protein, human
0
Tumor Suppressor Proteins
0
beta Catenin
0
Mixed Function Oxygenases
EC 1.-
TET1 protein, human
EC 1.-
Histone Demethylases
EC 1.14.11.-
KDM6A protein, human
EC 1.14.11.-
Ubiquitin Thiolesterase
EC 3.4.19.12
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
123-134Informations de copyright
© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Références
Oncogene. 2012 May 31;31(22):2783-93
pubmed: 21963850
Sci Rep. 2018 May 8;8(1):7119
pubmed: 29740198
Cancer Cell. 2018 Mar 12;33(3):512-526.e8
pubmed: 29533787
Cancer Cell. 2018 Jan 8;33(1):151
pubmed: 29316429
Genome Res. 2010 Sep;20(9):1297-303
pubmed: 20644199
Nature. 2015 Feb 26;518(7540):495-501
pubmed: 25719666
FEBS J. 2005 Aug;272(16):4249-59
pubmed: 16098205
Front Genet. 2012 Mar 15;3:35
pubmed: 22435069
J Surg Oncol. 2016 Oct;114(5):597-601
pubmed: 27471041
Mod Pathol. 2007 Sep;20(9):955-60
pubmed: 17632456
Clin Cancer Res. 2014 Sep 15;20(18):4935-48
pubmed: 25225064
Curr Med Chem. 2017;24(13):1321-1331
pubmed: 28176634
Nat Med. 2018 Jun;24(6):758-769
pubmed: 29785026
Hum Pathol. 2014 Jan;45(1):166-74
pubmed: 24321526
J Pathol. 2015 Aug;236(4):517-30
pubmed: 25875424
Nature. 2010 Oct 28;467(7319):1109-13
pubmed: 20981101
J Transl Med. 2012 Aug 30;10:179
pubmed: 22935333
Cell Rep. 2017 Oct 17;21(3):628-640
pubmed: 29045832
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4260-5
pubmed: 19255431
Nat Biotechnol. 2013 Mar;31(3):213-9
pubmed: 23396013
Gastroenterology. 2013 Jun;144(6):1220-9
pubmed: 23622131
Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16910-5
pubmed: 20837533
Mod Pathol. 2014 Oct;27(10):1321-30
pubmed: 24633195
Bioinformatics. 2010 Mar 1;26(5):589-95
pubmed: 20080505
Nat Rev Cancer. 2006 Jun;6(6):449-58
pubmed: 16723991
Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):139-44
pubmed: 9874785
Biochim Biophys Acta Mol Basis Dis. 2017 Jul;1863(7):1728-1738
pubmed: 28502706
Nat Genet. 2013 Dec;45(12):1470-1473
pubmed: 24185509
Nature. 2016 Mar 3;531(7592):47-52
pubmed: 26909576
Oncotarget. 2018 Apr 6;9(26):18518-18528
pubmed: 29719622
Nat Genet. 2018 Jun;50(6):883-894
pubmed: 29736013
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21188-93
pubmed: 22158988
Nat Genet. 2014 Mar;46(3):310-5
pubmed: 24487276
Nat Genet. 2011 Jun 05;43(7):668-72
pubmed: 21642991
Bioinformatics. 2010 Aug 15;26(16):2069-70
pubmed: 20562413
Hum Mutat. 2001 Nov;18(5):375-81
pubmed: 11668630
BMC Bioinformatics. 2013 Jan 16;14:7
pubmed: 23323831
Nat Biotechnol. 2011 Jan;29(1):24-6
pubmed: 21221095
Nucleic Acids Res. 2016 Jul 8;44(W1):W83-9
pubmed: 27098042
Science. 2010 Dec 3;330(6009):1410-3
pubmed: 21051595
Am J Surg Pathol. 2005 Apr;29(4):512-9
pubmed: 15767807
Theranostics. 2014 Jan 29;4(4):336-65
pubmed: 24578720
Am J Surg Pathol. 2009 May;33(5):768-74
pubmed: 19194274
Nature. 2010 Oct 28;467(7319):1114-7
pubmed: 20981102
Cancer Res. 2001 Dec 1;61(23):8401-4
pubmed: 11731417