Chlamydia trachomatis targets mitochondrial dynamics to promote intracellular survival and proliferation.
ATP
Chlamydia trachomatis
Drp1
mitochondrial dynamics
oxidative phosphorylation
Journal
Cellular microbiology
ISSN: 1462-5822
Titre abrégé: Cell Microbiol
Pays: India
ID NLM: 100883691
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
06
06
2018
revised:
18
09
2018
accepted:
04
10
2018
pubmed:
13
10
2018
medline:
7
2
2020
entrez:
13
10
2018
Statut:
ppublish
Résumé
Chlamydia trachomatis is an obligate intracellular bacterium that scavenges host metabolic products for its replication. Mitochondria are the power plants of eukaryotic cells and provide most of the cellular ATP via oxidative phosphorylation. Several intracellular pathogens target mitochondria as part of their obligatory cellular reprogramming. This study was designed to analyse the mitochondrial morphological changes in response to C. trachomatis infection in HeLa cells. Mitochondrial elongation and fragmentation were found at the early stages and late stages of C. trachomatis infection, respectively. C. trachomatis infection-induced mitochondrial elongation was associated with the increase of mitochondrial respiratory activity, ATP production, and intracellular growth of C. trachomatis. Silencing mitochondrial fusion mediator proteins abrogated the C. trachomatis infection-induced elevation in the oxygen consumption rate and attenuated chlamydial proliferation. Mechanistically, C. trachomatis induced the elevation of intracellular cAMP at the early phase of infection, followed by the phosphorylation of fission-inactive serine residue 637 (S637) of Drp1, resulting in mitochondrial elongation. Accordingly, treatment with adenylate cyclase inhibitor diminished mitochondrial elongation and bacterial growth in infected cells. Collectively, these results strongly indicate that C. trachomatis promotes its intracellular growth by targeting mitochondrial dynamics to regulate ATP synthesis via inhibition of the fission mediator Drp1.
Substances chimiques
Adenosine Triphosphate
8L70Q75FXE
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e12962Informations de copyright
© 2018 John Wiley & Sons Ltd.