Inherent physiological artifacts in EEG during tDCS.

Electrocardiogram (ECG) Electroencephalography (EEG) Finite element method (FEM) Physiological artifact Transcranial direct current stimulation (tDCS) Transcranial electric stimulation (tES)

Journal

NeuroImage
ISSN: 1095-9572
Titre abrégé: Neuroimage
Pays: United States
ID NLM: 9215515

Informations de publication

Date de publication:
15 01 2019
Historique:
received: 16 05 2018
revised: 10 09 2018
accepted: 08 10 2018
pubmed: 16 10 2018
medline: 7 3 2019
entrez: 16 10 2018
Statut: ppublish

Résumé

Online imaging and neuromodulation is invalid if stimulation distorts measurements beyond the point of accurate measurement. In theory, combining transcranial Direct Current Stimulation (tDCS) with electroencephalography (EEG) is compelling, as both use non-invasive electrodes and image-guided dose can be informed by the reciprocity principle. To distinguish real changes in EEG from stimulation artifacts, prior studies applied conventional signal processing techniques (e.g. high-pass filtering, ICA). Here, we address the assumptions underlying the suitability of these approaches. We distinguish physiological artifacts - defined as artifacts resulting from interactions between the stimulation induced voltage and the body and so inherent regardless of tDCS or EEG hardware performance - from methodology-related artifacts - arising from non-ideal experimental conditions or non-ideal stimulation and recording equipment performance. Critically, we identify inherent physiological artifacts which are present in all online EEG-tDCS: 1) cardiac distortion and 2) ocular motor distortion. In conjunction, non-inherent physiological artifacts which can be minimized in most experimental conditions include: 1) motion and 2) myogenic distortion. Artifact dynamics were analyzed for varying stimulation parameters (montage, polarity, current) and stimulation hardware. Together with concurrent physiological monitoring (ECG, respiration, ocular, EMG, head motion), and current flow modeling, each physiological artifact was explained by biological source-specific body impedance changes, leading to incremental changes in scalp DC voltage that are significantly larger than real neural signals. Because these artifacts modulate the DC voltage and scale with applied current, they are dose specific such that their contamination cannot be accounted for by conventional experimental controls (e.g. differing stimulation montage or current as a control). Moreover, because the EEG artifacts introduced by physiologic processes during tDCS are high dimensional (as indicated by Generalized Singular Value Decomposition- GSVD), non-stationary, and overlap highly with neurogenic frequencies, these artifacts cannot be easily removed with conventional signal processing techniques. Spatial filtering techniques (GSVD) suggest that the removal of physiological artifacts would significantly degrade signal integrity. Physiological artifacts, as defined here, would emerge only during tDCS, thus processing techniques typically applied to EEG in the absence of tDCS would not be suitable for artifact removal during tDCS. All concurrent EEG-tDCS must account for physiological artifacts that are a) present regardless of equipment used, and b) broadband and confound a broad range of experiments (e.g. oscillatory activity and event related potentials). Removal of these artifacts requires the recognition of their non-stationary, physiology-specific dynamics, and individualized nature. We present a broad taxonomy of artifacts (non/stimulation related), and suggest possible approaches and challenges to denoising online EEG-tDCS stimulation artifacts.

Identifiants

pubmed: 30321643
pii: S1053-8119(18)31984-0
doi: 10.1016/j.neuroimage.2018.10.025
pmc: PMC6289749
mid: NIHMS1511254
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

408-424

Subventions

Organisme : NCI NIH HHS
ID : U54 CA137788
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH111896
Pays : United States
Organisme : NCI NIH HHS
ID : U54 CA132378
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG054077
Pays : United States
Organisme : NCATS NIH HHS
ID : KL2 TR001429
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS101362
Pays : United States
Organisme : NIA NIH HHS
ID : K01 AG050707
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH109289
Pays : United States

Informations de copyright

Copyright © 2018 Elsevier Inc. All rights reserved.

Références

Clin Neurophysiol. 2007 Aug;118(8):1877-88
pubmed: 17574912
J Neurosci Methods. 2010 Jul 15;190(2):188-97
pubmed: 20488204
Clin Neurophysiol. 2004 Mar;115(3):710-20
pubmed: 15036067
Biol Psychol. 1994 Jul;37(3):183-98
pubmed: 7948464
Clin EEG Neurosci. 2012 Jul;43(3):176-83
pubmed: 22956646
Brain Topogr. 2017 Jul;30(4):450-460
pubmed: 28474167
J Pain. 2016 Jan;17(1):14-26
pubmed: 26456677
Psychophysiology. 2010 Sep;47(5):888-904
pubmed: 20374541
Clin Neurophysiol. 2014 Mar;125(3):484-90
pubmed: 24095153
Brain Stimul. 2016 Mar-Apr;9(2):218-24
pubmed: 26831734
Clin Electroencephalogr. 1993 Jul;24(3):123-6
pubmed: 8403444
Conf Proc IEEE Eng Med Biol Soc. 2015 Aug;2015:2729-32
pubmed: 26736856
Front Cell Neurosci. 2016 Jun 17;10:159
pubmed: 27378856
Brain Stimul. 2016 Jul-Aug;9(4):623-4
pubmed: 27160469
Clin Neurophysiol. 2005 Apr;116(4):878-85
pubmed: 15792897
Brain Stimul. 2012 Jul;5(3):175-195
pubmed: 22037126
Clin Neurophysiol. 2002 Feb;113(2):175-84
pubmed: 11856623
Clin Neurophysiol. 2013 Mar;124(3):551-6
pubmed: 23031743
J Affect Disord. 2017 Jan 15;208:597-603
pubmed: 28029427
Front Psychiatry. 2016 May 27;7:87
pubmed: 27303311
Brain Topogr. 2009 Jun;22(1):7-12
pubmed: 19214730
Neuroimage. 2016 Oct 15;140:66-75
pubmed: 26619787
Front Hum Neurosci. 2013 Aug 27;7:495
pubmed: 23986681
Brain Stimul. 2015 Nov-Dec;8(6):1010-20
pubmed: 26275346
Neuroimage. 2016 Oct 15;140:33-40
pubmed: 26455796
IEEE Trans Biomed Eng. 2014 Jul;61(7):1967-78
pubmed: 24956615
Neuroimage. 2005 Nov 1;28(2):326-41
pubmed: 16084117
Front Syst Neurosci. 2015 Mar 17;9:26
pubmed: 25852494
Neuroimage. 2016 Oct 15;140:163-73
pubmed: 27125841
J Neural Eng. 2013 Jun;10(3):036018
pubmed: 23649036
Electroencephalogr Clin Neurophysiol. 1972 Oct;33(4):419-24
pubmed: 4115700
PLoS One. 2014 Feb 13;9(2):e87347
pubmed: 24551055
Front Cell Neurosci. 2015 Dec 18;9:482
pubmed: 26733808
Electroencephalogr Clin Neurophysiol. 1991 Jul;79(1):36-44
pubmed: 1713550
Clin Neurophysiol. 2003 Sep;114(9):1580-93
pubmed: 12948787
Psychophysiology. 1974 May;11(3):350-60
pubmed: 4417673
IEEE Eng Med Biol Mag. 1989;8(1):39-45
pubmed: 18238304
J Neurosci Methods. 2004 Mar 15;134(1):9-21
pubmed: 15102499
Physiol Meas. 2003 Feb;24(1):213-34
pubmed: 12636198
J Altern Complement Med. 2013 Jun;19(6):558-63
pubmed: 23210470
Ann N Y Acad Sci. 2003 Dec;1000:375-9
pubmed: 14766650
Clin Electroencephalogr. 1987 Apr;18(2):61-7
pubmed: 3594923
Clin Neurophysiol. 2013 Sep;124(9):1716-28
pubmed: 23684898
J Neural Eng. 2016 Jun;13(3):036022
pubmed: 27172063
Brain Stimul. 2014 Jan-Feb;7(1):97-104
pubmed: 24080439
Brain Stimul. 2014 Jul-Aug;7(4):525-31
pubmed: 24776785
Emotion. 2001 Sep;1(3):276-98
pubmed: 12934687
Brain Stimul. 2015 May-Jun;8(3):509-14
pubmed: 25686527
Electroencephalogr Clin Neurophysiol. 1985 Feb;60(2):174-6
pubmed: 2578370
Sci Rep. 2015 Oct 27;5:15717
pubmed: 26503014
Front Hum Neurosci. 2014 Aug 07;8:601
pubmed: 25147519
Front Psychol. 2012 Jul 09;3:233
pubmed: 22787453
Front Hum Neurosci. 2017 Feb 01;11:23
pubmed: 28203151
Clin Neurophysiol. 2017 Apr;128(4):589-603
pubmed: 28231477
BMC Neurosci. 2010 Mar 16;11:38
pubmed: 20233439
Neuroimage. 2017 Aug 15;157:69-80
pubmed: 28578130
Magn Reson Med. 2001 Feb;45(2):196-201
pubmed: 11180425
Neuroimage. 2016 Oct 15;140:99-109
pubmed: 27039705
J Vis Exp. 2013 Jul 14;(77):e50309
pubmed: 23893039
Brain Stimul. 2009 Oct;2(4):201-7, 207.e1
pubmed: 20648973
Clin Neurophysiol. 2001 Mar;112(3):545-50
pubmed: 11222978
Epilepsy Behav. 2012 Nov;25(3):417-25
pubmed: 23123281
J Vis Exp. 2013 Jun 17;(76):null
pubmed: 23851401
Curr Protoc Neurosci. 2010 Jul;Chapter 6:Unit 6.25.1-24
pubmed: 20578033
Neuroimage. 2014 Jan 15;85 Pt 3:1040-7
pubmed: 23099102
Neuroreport. 2001 Nov 16;12(16):3543-8
pubmed: 11733708
Sensors (Basel). 2016 Apr 22;16(4):
pubmed: 27110795
Elife. 2017 Feb 07;6:
pubmed: 28169833
J Neural Eng. 2013 Dec;10(6):066004
pubmed: 24099977

Auteurs

Nigel Gebodh (N)

Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA. Electronic address: ngebodh01@citymail.cuny.edu.

Zeinab Esmaeilpour (Z)

Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA. Electronic address: zesmaeilpour@ccny.cuny.edu.

Devin Adair (D)

Department of Psychology, The Graduate Center at City University of New York, New York, NY, USA. Electronic address: dadair@gradcenter.cuny.edu.

Kenneth Chelette (K)

ANT Neuro North America, Madison, WI, USA.

Jacek Dmochowski (J)

Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA. Electronic address: jdmochowski@ccny.cuny.edu.

Adam J Woods (AJ)

Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, Department of Neuroscience, University of Florida, Gainesville, FL, USA. Electronic address: ajwoods@phhp.ufl.edu.

Emily S Kappenman (ES)

San Diego State University, San Diego, CA, USA. Electronic address: emily.kappenman@sdsu.edu.

Lucas C Parra (LC)

Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA. Electronic address: parra@ccny.cuny.edu.

Marom Bikson (M)

Neural Engineering Laboratory, Department of Biomedical Engineering, The City College of New York of the City University of New York, New York, NY, USA; Department of Psychology, The Graduate Center at City University of New York, New York, NY, USA. Electronic address: bikson@ccny.cuny.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH