Morphological MRI-based features provide pretreatment survival prediction in glioblastoma.
Biomarkers
Glioblastoma
Multivariate analysis
Prognosis
Survival analysis
Journal
European radiology
ISSN: 1432-1084
Titre abrégé: Eur Radiol
Pays: Germany
ID NLM: 9114774
Informations de publication
Date de publication:
Apr 2019
Apr 2019
Historique:
received:
23
05
2018
accepted:
12
09
2018
revised:
19
08
2018
pubmed:
17
10
2018
medline:
7
5
2019
entrez:
17
10
2018
Statut:
ppublish
Résumé
We wished to determine whether tumor morphology descriptors obtained from pretreatment magnetic resonance images and clinical variables could predict survival for glioblastoma patients. A cohort of 404 glioblastoma patients (311 discoveries and 93 validations) was used in the study. Pretreatment volumetric postcontrast T1-weighted magnetic resonance images were segmented to obtain the relevant morphological measures. Kaplan-Meier, Cox proportional hazards, correlations, and Harrell's concordance indexes (c-indexes) were used for the statistical analysis. A linear prognostic model based on the outstanding variables (age, contrast-enhanced (CE) rim width, and surface regularity) identified a group of patients with significantly better survival (p < 0.001, HR = 2.57) with high accuracy (discovery c-index = 0.74; validation c-index = 0.77). A similar model applied to totally resected patients was also able to predict survival (p < 0.001, HR = 3.43) with high predictive value (discovery c-index = 0.81; validation c-index = 0.92). Biopsied patients with better survival were well identified (p < 0.001, HR = 7.25) by a model including age and CE volume (c-index = 0.87). Simple linear models based on small sets of meaningful MRI-based pretreatment morphological features and age predicted survival of glioblastoma patients to a high degree of accuracy. The partition of the population using the extent of resection improved the prognostic value of those measures. • A combination of two MRI-based morphological features (CE rim width and surface regularity) and patients' age outperformed previous prognosis scores for glioblastoma. • Prognosis models for homogeneous surgical procedure groups led to even more accurate survival prediction based on Kaplan-Meier analysis and concordance indexes.
Identifiants
pubmed: 30324390
doi: 10.1007/s00330-018-5758-7
pii: 10.1007/s00330-018-5758-7
doi:
Types de publication
Journal Article
Multicenter Study
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1968-1977Subventions
Organisme : James S. McDonnell Foundation
ID : 220020450
Organisme : Ministerio de Economía y Competitividad/FEDER
ID : MTM2015-71200-R
Commentaires et corrections
Type : ErratumIn
Références
JAMA. 1982 May 14;247(18):2543-6
pubmed: 7069920
Mol Imaging Biol. 2016 Jun;18(3):454-62
pubmed: 26463215
Eur Radiol. 2017 Sep;27(9):3583-3592
pubmed: 28168370
Top Magn Reson Imaging. 2017 Feb;26(1):43-53
pubmed: 28079714
Neuro Oncol. 2014 Oct;16 Suppl 7:vii12-23
pubmed: 25313234
J Neurooncol. 2014 Dec;120(3):625-34
pubmed: 25193022
Sci Rep. 2017 Sep 4;7(1):10353
pubmed: 28871110
Radiology. 2016 Sep;280(3):880-9
pubmed: 27326665
Neuro Oncol. 2011 Dec;13(12):1339-48
pubmed: 21914639
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1282-5
pubmed: 24109929
Invest Radiol. 2017 Jun;52(6):360-366
pubmed: 28079702
Eur Radiol. 2017 Mar;27(3):1096-1104
pubmed: 27329522
BMC Cancer. 2016 Aug 08;16:611
pubmed: 27502180
Cell. 2006 Dec 1;127(5):905-15
pubmed: 17129778
Neuro Oncol. 2017 Jan;19(1):89-98
pubmed: 27580889
Neuro Oncol. 2017 May 1;19(5):669-677
pubmed: 28453749
Radiology. 2016 Feb;278(2):563-77
pubmed: 26579733
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021921
pubmed: 21929033
PLoS One. 2017 Jun 6;12(6):e0178843
pubmed: 28586353
J Neurosurg. 2001 Aug;95(2):190-8
pubmed: 11780887
J Natl Cancer Inst. 2017 Jul 1;109(7):
pubmed: 28423406
Phys Med Biol. 2016 Jul 7;61(13):R150-66
pubmed: 27269645
J Neurosurg. 2016 Apr;124(4):977-88
pubmed: 26495941
J Neurosurg. 2014 Nov;121(5):1115-23
pubmed: 25192475
Neuro Oncol. 2015 Nov;17(11):1525-37
pubmed: 26203066
Radiology. 2016 Feb;278(2):546-53
pubmed: 26348233
Radiology. 2018 Jul;288(1):218-225
pubmed: 29924716
Curr Neurol Neurosci Rep. 2015 Jan;15(1):506
pubmed: 25410316
J Neurooncol. 2017 Nov;135(2):391-402
pubmed: 28755324
N Engl J Med. 2005 Mar 10;352(10):987-96
pubmed: 15758009
J Natl Cancer Inst. 2008 Jan 16;100(2):88-9
pubmed: 18182611