Comparing Agent-Based Delivery of DNA and PNA Forced Intercalation (FIT) Probes for Multicolor mRNA Imaging.
RNA
bioconjugation
fluorescence
imaging agents
oligonucleotides
Journal
Chembiochem : a European journal of chemical biology
ISSN: 1439-7633
Titre abrégé: Chembiochem
Pays: Germany
ID NLM: 100937360
Informations de publication
Date de publication:
15 02 2019
15 02 2019
Historique:
received:
06
09
2018
pubmed:
17
10
2018
medline:
26
11
2019
entrez:
17
10
2018
Statut:
ppublish
Résumé
Fluorogenic oligonucleotide probes allow mRNA imaging in living cells. A key challenge is the cellular delivery of probes. Most delivery agents, such as cell-penetrating peptides (CPPs) and pore-forming proteins, require interactions with the membrane. Charges play an important role. To explore the influence of charge on fluorogenic properties and delivery efficiency, we compared peptide nucleic acid (PNA)- with DNA-based forced intercalation (FIT) probes. Perhaps counterintuitively, fluorescence signaling by charged DNA FIT probes proved tolerant to CPP conjugation, whereas CPP-FIT PNA conjugates were affected. Live-cell imaging was performed with a genetically engineered HEK293 cell line to allow the inducible expression of a specific mRNA target. Blob-like features and high background were recurring nuisances of the tested CPP and lipid conjugates. By contrast, delivery by streptolysin-O provided high enhancements of the fluorescence of the FIT probe upon target induction. Notably, DNA-based FIT probes were brighter and more responsive than PNA-based FIT probes. Optimized conditions enabled live-cell multicolor imaging of three different mRNA target sequences.
Identifiants
pubmed: 30326174
doi: 10.1002/cbic.201800526
pmc: PMC6470956
doi:
Substances chimiques
Cell-Penetrating Peptides
0
DNA Probes
0
Fluorescent Dyes
0
Intercalating Agents
0
Peptide Nucleic Acids
0
RNA, Messenger
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
595-604Informations de copyright
© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Références
Gene Ther. 2004 May;11(9):757-64
pubmed: 14961071
Angew Chem Int Ed Engl. 1999 Aug;38(15):2203-2206
pubmed: 10425482
Chembiochem. 2017 Aug 17;18(16):1589-1592
pubmed: 28557173
Angew Chem Int Ed Engl. 2014 Oct 13;53(42):11370-5
pubmed: 25167966
Annu Rev Biophys. 2018 May 20;47:85-106
pubmed: 29345990
Nat Rev Mol Cell Biol. 2015 Feb;16(2):95-109
pubmed: 25549890
Acc Chem Res. 2016 Apr 19;49(4):714-23
pubmed: 26963493
Mol Cell. 1998 Oct;2(4):437-45
pubmed: 9809065
J Neurochem. 1989 Jun;52(6):1751-8
pubmed: 2723634
Chembiochem. 2011 Apr 11;12(6):896-903
pubmed: 21365733
Nat Protoc. 2014 Oct;9(10):2411-24
pubmed: 25232937
Bioconjug Chem. 2006 Sep-Oct;17(5):1151-5
pubmed: 16984122
Annu Rev Biomed Eng. 2009;11:25-47
pubmed: 19400712
Bioorg Med Chem Lett. 2004 Oct 4;14(19):4975-7
pubmed: 15341962
Methods Mol Biol. 2011;683:21-9
pubmed: 21053119
Science. 1991 Dec 6;254(5037):1497-500
pubmed: 1962210
Angew Chem Int Ed Engl. 2011 Feb 18;50(8):1931-4
pubmed: 21328673
Nat Biotechnol. 1996 Mar;14(3):303-8
pubmed: 9630890
Curr Opin Chem Biol. 2004 Oct;8(5):547-53
pubmed: 15450499
Bioconjug Chem. 2014 Sep 17;25(9):1697-708
pubmed: 25180641
Chem Sci. 2016 Jan 1;7(1):128-135
pubmed: 29861973
Cancer Lett. 2014 Sep 28;352(1):90-6
pubmed: 23416875
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):263-8
pubmed: 16384914
Bioconjug Chem. 2012 Oct 17;23(10):2051-60
pubmed: 22946435
J Am Chem Soc. 2013 Dec 18;135(50):19025-32
pubmed: 24295172
Nat Methods. 2008 Oct;5(10):877-9
pubmed: 18806792
Nat Methods. 2018 Jan;15(1):81-89
pubmed: 29131164
Chem Rev. 2010 Aug 11;110(8):4709-23
pubmed: 20583806
Chem Commun (Camb). 2016 Feb 7;52(11):2405-7
pubmed: 26735489
Chemistry. 2013 Jun 17;19(25):8182-9
pubmed: 23633397
Chem Soc Rev. 2011 Dec;40(12):5815-28
pubmed: 21660343
Nucleic Acids Res. 2004 Apr 14;32(6):e58
pubmed: 15084673
Int J Pharm. 2016 Jul 25;509(1-2):71-84
pubmed: 27224007
PLoS One. 2014 May 15;9(5):e97797
pubmed: 24831131
J Am Chem Soc. 2006 Mar 8;128(9):2954-62
pubmed: 16506775
Chembiochem. 2012 Sep 24;13(14):2072-81
pubmed: 22936610
Nucleic Acids Res. 2008 Jul;36(12):e69
pubmed: 18503086
Nucleic Acids Res. 2012 Mar;40(5):2152-67
pubmed: 22070883
Chembiochem. 2005 Jan;6(1):69-77
pubmed: 15584015
Adv Drug Deliv Rev. 2015 Jun 29;87:52-67
pubmed: 25747758
Chembiochem. 2019 Feb 15;20(4):595-604
pubmed: 30326174
Biochem Biophys Res Commun. 1997 Feb 13;231(2):421-4
pubmed: 9070292
Bioconjug Chem. 2012 Jun 20;23(6):1091-104
pubmed: 22372953
Mol Biotechnol. 1995 Jun;3(3):237-48
pubmed: 7552693
J Neurosci Methods. 1999 Oct 30;93(1):37-48
pubmed: 10598863
FASEB J. 1998 Jan;12(1):67-77
pubmed: 9438412
Cancer Res. 2006 Apr 15;66(8):4208-14
pubmed: 16618743
Angew Chem Int Ed Engl. 2009;48(5):856-70
pubmed: 19065690
Nucleic Acids Res. 2004 Apr 14;32(6):e57
pubmed: 15084672
Acc Chem Res. 2007 Jun;40(6):402-9
pubmed: 17458926
Chemistry. 2007;13(1):300-10
pubmed: 17024704
J Am Chem Soc. 2016 Sep 14;138(36):11429-32
pubmed: 27510580
Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17522-5
pubmed: 18988730
EMBO J. 1982;1(7):841-5
pubmed: 6329708
Nat Methods. 2009 May;6(5):331-8
pubmed: 19404252
ACS Chem Biol. 2013 May 17;8(5):890-4
pubmed: 23402653
ACS Chem Biol. 2018 Mar 16;13(3):742-749
pubmed: 29378392
Chem Rev. 2018 Aug 22;118(16):7409-7531
pubmed: 30052023
Nat Biotechnol. 1998 Sep;16(9):857-61
pubmed: 9743120
Nucleic Acids Res. 1997 Jul 15;25(14):2730-6
pubmed: 9207018
J Am Chem Soc. 2009 May 13;131(18):6492-7
pubmed: 19378999
Mol Pharm. 2012 Mar 5;9(3):685-93
pubmed: 22289057