Catechin-mediated restructuring of a bacterial toxin inhibits activity.


Journal

Biochimica et biophysica acta. General subjects
ISSN: 1872-8006
Titre abrégé: Biochim Biophys Acta Gen Subj
Pays: Netherlands
ID NLM: 101731726

Informations de publication

Date de publication:
01 2019
Historique:
received: 20 08 2018
revised: 12 10 2018
accepted: 15 10 2018
pubmed: 21 10 2018
medline: 17 8 2019
entrez: 21 10 2018
Statut: ppublish

Résumé

Catechins, polyphenols derived from tea leaves, have been shown to have antibacterial properties, through direct killing of bacteria as well as through inhibition of bacterial toxin activity. In particular, certain catechins have been shown to have bactericidal effects on the oral bacterium, Aggregatibacter actinomycetemcomitans, as well as the ability to inhibit a key virulence factor of this organism, leukotoxin (LtxA). The mechanism of catechin-mediated inhibition of LtxA has not been shown. In this work, we studied the ability of six catechins to inhibit LtxA-mediated cytotoxicity in human white blood cells, using Trypan blue staining, and investigated the mechanism of action using a combination of techniques, including fluorescence and circular dichroism spectroscopy, confocal microscopy, and surface plasmon resonance. We found that all the catechins except (-)-catechin inhibited the activity of this protein, with the galloylated catechins having the strongest effect. Pre-incubation of the toxin with the catechins increased the inhibitory action, indicating that the catechins act on the protein, rather than the cell. The secondary structure of LtxA was dramatically altered in the presence of catechin, which resulted in an inhibition of toxin binding to cholesterol, an important initial step in the cytotoxic mechanism of the toxin. These results demonstrate that the catechins inhibit LtxA activity by altering its structure to prevent interaction with specific molecules present on the host cell surface. Galloylated catechins modify protein toxin structure, inhibiting the toxin from binding to the requisite molecules on the host cell surface.

Sections du résumé

BACKGROUND
Catechins, polyphenols derived from tea leaves, have been shown to have antibacterial properties, through direct killing of bacteria as well as through inhibition of bacterial toxin activity. In particular, certain catechins have been shown to have bactericidal effects on the oral bacterium, Aggregatibacter actinomycetemcomitans, as well as the ability to inhibit a key virulence factor of this organism, leukotoxin (LtxA). The mechanism of catechin-mediated inhibition of LtxA has not been shown.
METHODS
In this work, we studied the ability of six catechins to inhibit LtxA-mediated cytotoxicity in human white blood cells, using Trypan blue staining, and investigated the mechanism of action using a combination of techniques, including fluorescence and circular dichroism spectroscopy, confocal microscopy, and surface plasmon resonance.
RESULTS
We found that all the catechins except (-)-catechin inhibited the activity of this protein, with the galloylated catechins having the strongest effect. Pre-incubation of the toxin with the catechins increased the inhibitory action, indicating that the catechins act on the protein, rather than the cell. The secondary structure of LtxA was dramatically altered in the presence of catechin, which resulted in an inhibition of toxin binding to cholesterol, an important initial step in the cytotoxic mechanism of the toxin.
CONCLUSIONS
These results demonstrate that the catechins inhibit LtxA activity by altering its structure to prevent interaction with specific molecules present on the host cell surface.
GENERAL SIGNIFICANCE
Galloylated catechins modify protein toxin structure, inhibiting the toxin from binding to the requisite molecules on the host cell surface.

Identifiants

pubmed: 30342156
pii: S0304-4165(18)30332-5
doi: 10.1016/j.bbagen.2018.10.011
pmc: PMC6235716
mid: NIHMS1509885
pii:
doi:

Substances chimiques

Bacterial Toxins 0
Exotoxins 0
leukotoxin 0
Catechin 8R1V1STN48
Cholesterol 97C5T2UQ7J

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Pagination

191-198

Subventions

Organisme : NIDCR NIH HHS
ID : K99 DE022795
Pays : United States
Organisme : NIDCR NIH HHS
ID : R00 DE022795
Pays : United States
Organisme : NIDCR NIH HHS
ID : R03 DE025275
Pays : United States

Informations de copyright

Copyright © 2018 Elsevier B.V. All rights reserved.

Références

Biochem Pharmacol. 2004 Aug 1;68(3):549-61
pubmed: 15242821
PLoS One. 2013 Sep 05;8(9):e73390
pubmed: 24039929
Appl Environ Microbiol. 2009 Mar;75(5):1410-6
pubmed: 19139230
Microb Pathog. 2002 Jan;32(1):1-13
pubmed: 11782116
ACS Infect Dis. 2018 Jul 13;4(7):1073-1081
pubmed: 29742342
J Biol Chem. 1997 Nov 28;272(48):30463-9
pubmed: 9374538
J Periodontol. 2000 Jun;71(6):912-22
pubmed: 10914794
J Clin Periodontol. 1985 Jul;12(6):465-76
pubmed: 3894435
Biochim Biophys Acta. 2008 Apr;1778(4):1120-30
pubmed: 18262490
Pharmacology. 1999 Jul;59(1):34-44
pubmed: 10352424
J Periodontol. 1993 Jul;64(7):630-6
pubmed: 8396176
Biochim Biophys Acta. 2000 Feb 9;1476(2):350-62
pubmed: 10669799
Nat Rev Drug Discov. 2010 Feb;9(2):117-28
pubmed: 20081869
Cell Microbiol. 2003 Feb;5(2):111-21
pubmed: 12580947
J Virol. 2002 Oct;76(20):10356-64
pubmed: 12239312
Clin Microbiol Infect. 2009 Apr;15(4):341-6
pubmed: 19431221
Curr Opin Microbiol. 2009 Oct;12(5):490-6
pubmed: 19631578
Biophys J. 1991 Jul;60(1):179-89
pubmed: 1883937
Biol Pharm Bull. 2005 Nov;28(11):2125-7
pubmed: 16272702
Nat Rev Microbiol. 2008 Jan;6(1):17-27
pubmed: 18079741
Sci Rep. 2015 Nov 09;5:16158
pubmed: 26548447
FEBS Lett. 2003 May 22;543(1-3):184-9
pubmed: 12753930
Toxins (Basel). 2011 Mar;3(3):242-59
pubmed: 22069708
Mol Oral Microbiol. 2016 Feb;31(1):94-105
pubmed: 26352738
J Appl Microbiol. 2014 May;116(5):1164-71
pubmed: 24471579
J Clin Periodontol. 1985 Jan;12(1):1-20
pubmed: 3882766
Chirality. 2010 Aug;22(8):726-33
pubmed: 20143413
J Antimicrob Chemother. 1998 Aug;42(2):211-6
pubmed: 9738838
Gene. 2009 Aug 15;443(1-2):42-7
pubmed: 19450669
Arch Oral Biol. 2017 Mar;75:89-99
pubmed: 27825679
J Biol Chem. 2009 Apr 17;284(16):10650-8
pubmed: 19240023
Clin Microbiol Infect. 2004 Feb;10(2):98-118
pubmed: 14759235
J Periodontol. 1994 Sep;65(9):827-34
pubmed: 7990018
J Antibiot (Tokyo). 2010 Aug;63(8):423-30
pubmed: 20551985
Biochemistry. 2016 Aug 30;55(34):4787-97
pubmed: 27504950
Mol Microbiol. 1991 Mar;5(3):521-8
pubmed: 2046545
Mol Nutr Food Res. 2008 Jan;52(1):79-104
pubmed: 18081206
J Indian Soc Periodontol. 2011 Jan;15(1):39-45
pubmed: 21772720
J Biol Chem. 2016 Feb 12;291(7):3658-67
pubmed: 26663081
Cell Microbiol. 2006 Nov;8(11):1753-67
pubmed: 16827908
Acta Pharmacol Sin. 2006 Jan;27(1):27-40
pubmed: 16364208
Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42
pubmed: 21209361
Curr Opin Microbiol. 2016 Oct;33:41-46
pubmed: 27318551
J Food Prot. 2006 Feb;69(2):354-61
pubmed: 16496576
J Biol Chem. 2013 Aug 9;288(32):23607-21
pubmed: 23792963
J Infect Chemother. 2004 Feb;10(1):55-8
pubmed: 14991521
Nat Chem Biol. 2007 Sep;3(9):541-8
pubmed: 17710100
Cell Microbiol. 2012 Jun;14(6):869-81
pubmed: 22309134
J Clin Periodontol. 1993 Mar;20(3):166-71
pubmed: 8450081
Anal Biochem. 1990 Nov 15;191(1):110-8
pubmed: 2077933
Trends Microbiol. 1999 Sep;7(9):356-61
pubmed: 10470043
Microb Pathog. 2007 May-Jun;42(5-6):215-24
pubmed: 17391908
Infect Immun. 1998 Sep;66(9):4474-83
pubmed: 9712803
J Membr Biol. 2016 Aug;249(4):503-11
pubmed: 27039399
J Med Microbiol. 2005 Mar;54(Pt 3):293-8
pubmed: 15713614
J Vet Med Sci. 2016 Oct 1;78(9):1439-1445
pubmed: 27246281
Infect Immun. 2002 Aug;70(8):4112-23
pubmed: 12117919
Can J Microbiol. 2014 Mar;60(3):147-54
pubmed: 24588388
Food Chem Toxicol. 2004 Aug;42(8):1251-7
pubmed: 15207375
Mol Pharm. 2009 Mar-Apr;6(2):396-406
pubmed: 19296614
Periodontol 2000. 2010 Jun;53:154-66
pubmed: 20403111
Mol Pharm. 2007 Sep-Oct;4(5):749-58
pubmed: 17680719
Periodontol 2000. 1999 Jun;20:136-67
pubmed: 10522226
Biochemistry. 1999 Jun 8;38(23):7509-16
pubmed: 10360948
Periodontol 2000. 1996 Feb;10:79-88
pubmed: 9567938

Auteurs

En Hyung Chang (EH)

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.

Joanne Huang (J)

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.

Zixiang Lin (Z)

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA.

Angela C Brown (AC)

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA. Electronic address: acb313@lehigh.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH