Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings.

xylem X-ray phase contrast micro-tomography (micro-CT) beech (Fagus sylvatica) embolism hydraulic vulnerability segmentation maple (Acer pseudoplatanus) seedlings synchrotron

Journal

The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884

Informations de publication

Date de publication:
03 2019
Historique:
received: 18 04 2018
accepted: 14 10 2018
pubmed: 23 10 2018
medline: 10 1 2020
entrez: 23 10 2018
Statut: ppublish

Résumé

The seedling stage is the most susceptible one during a tree's life. Water relations may be crucial for seedlings due to their small roots, limited water buffers and the effects of drought on water transport. Despite obvious relevance, studies on seedling xylem hydraulics are scarce as respective methodical approaches are limited. Micro-CT scans of intact Acer pseudoplatanus and Fagus sylvatica seedlings dehydrated to different water potentials (Ψ) allowed the simultaneous observation of gas-filled versus water-filled conduits and the calculation of percentage loss of conductivity (PLC) in stems, roots and leaves (petioles or main veins). Additionally, anatomical analyses were performed and stem PLC measured with hydraulic techniques. In A. pseudoplatanus, petioles showed a higher Ψ at 50% PLC (Ψ

Identifiants

pubmed: 30347122
doi: 10.1111/nph.15549
pmc: PMC6492020
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1831-1842

Subventions

Organisme : Bundesministerium für Wissenschaft, Forschung und Wirtschaft
ID : SPA 05/017
Pays : International
Organisme : Austrian Science Fund
ID : P29896-B22
Pays : International
Organisme : Austrian Science Fund
ID : T667-B16
Pays : International
Organisme : Austrian Science Fund FWF
ID : T 667
Pays : Austria
Organisme : Austrian Science Fund FWF
ID : P 29896
Pays : Austria

Informations de copyright

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Références

New Phytol. 2015 Feb;205(3):1095-1105
pubmed: 25385085
Oecologia. 2001 Feb;126(4):457-461
pubmed: 28547229
New Phytol. 2014 Aug;203(3):842-50
pubmed: 24860955
Plant Cell Environ. 2015 Jun;38(6):1060-8
pubmed: 25292257
Tree Physiol. 1999 Jan;19(1):31-37
pubmed: 12651329
J Exp Bot. 2016 Apr;67(9):2617-26
pubmed: 26946123
Tree Physiol. 2001 Mar;21(5):275-86
pubmed: 11262919
Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:847-875
pubmed: 11337418
Plant Cell Environ. 2006 Apr;29(4):571-83
pubmed: 17080608
Plant Physiol. 2016 Jan;170(1):273-82
pubmed: 26527655
New Phytol. 2016 Dec;212(4):1007-1018
pubmed: 27373446
New Phytol. 2017 Apr;214(2):561-569
pubmed: 28124474
Am J Bot. 2017 Jul;104(7):979-992
pubmed: 28724592
New Phytol. 2018 Oct;220(1):104-110
pubmed: 30040128
Plant Physiol Biochem. 2017 Nov;120:24-29
pubmed: 28968592
New Phytol. 2018 Mar;217(4):1484-1493
pubmed: 29193122
Plant Physiol. 2017 Dec;175(4):1649-1660
pubmed: 29042460
Plant Cell Environ. 2010 Sep;33(9):1502-12
pubmed: 20444217
Plant Physiol. 2009 Oct;151(2):949-54
pubmed: 19641033
Tree Physiol. 2003 Nov;23(16):1101-12
pubmed: 14522716
Plant Physiol. 2009 Jan;149(1):575-84
pubmed: 19011001
J Exp Bot. 2018 Nov 26;69(22):5611-5623
pubmed: 30184113
Tree Physiol. 2003 Sep;23(13):907-14
pubmed: 14532014
Funct Plant Biol. 2016 Apr;43(4):370-379
pubmed: 32480468
Plant Physiol. 2016 Nov;172(3):1657-1668
pubmed: 27613852
New Phytol. 2010 Mar;185(4):1016-24
pubmed: 20028475
Plant Cell Environ. 2015 Aug;38(8):1503-13
pubmed: 25495925
Plant Cell Environ. 2008 Nov;31(11):1545-56
pubmed: 18657057
Tree Physiol. 2016 Aug;36(8):983-93
pubmed: 27146334
Oecologia. 2004 Apr;139(2):190-8
pubmed: 14767754
J Microsc. 2002 Apr;206(Pt 1):33-40
pubmed: 12000561
Plant Physiol. 2016 Apr;170(4):2085-94
pubmed: 26896395
Plant Cell Environ. 2014 May;37(5):1171-83
pubmed: 24289816
New Phytol. 2015 Feb;205(3):961-964
pubmed: 25580652
Physiol Plant. 2015 Dec;155(4):424-34
pubmed: 25677081
Tree Physiol. 1997 Jun;17(6):351-7
pubmed: 14759843
Plant Cell Environ. 2010 Dec;33(12):2101-11
pubmed: 20636490
Plant Cell Environ. 2014 Nov;37(11):2491-9
pubmed: 24588546
Trends Plant Sci. 2000 Nov;5(11):482-8
pubmed: 11077257
Plant Cell Environ. 2016 Apr;39(4):860-70
pubmed: 26574193
Am J Bot. 2008 Mar;95(3):299-314
pubmed: 21632355
Plant Physiol. 2013 Apr;161(4):1820-9
pubmed: 23463781
Plant Cell Environ. 2015 Jan;38(1):201-6
pubmed: 24942003
Tree Physiol. 2017 Apr 1;37(4):456-468
pubmed: 27881798
Plant Physiol. 2017 Feb;173(2):1197-1210
pubmed: 28049739
J Exp Bot. 2016 Sep;67(17):5029-39
pubmed: 27388214
Science. 1983 Nov 4;222(4623):500-1
pubmed: 17746198
New Phytol. 2017 Apr;214(2):890-898
pubmed: 28195328
Plant Cell Environ. 2013 Nov;36(11):1938-49
pubmed: 23701011
J Exp Bot. 2013 May;64(8):2321-32
pubmed: 23585669
Physiol Plant. 2019 Apr;165(4):843-854
pubmed: 29923608
New Phytol. 2016 Mar;209(4):1403-9
pubmed: 26742653
Plant Cell Environ. 2013 Jan;36(1):103-15
pubmed: 22690910
New Phytol. 2017 Feb;213(3):1068-1075
pubmed: 27735069
New Phytol. 2015 Jul;207(1):14-27
pubmed: 25773898
J Exp Bot. 2013 Nov;64(15):4779-91
pubmed: 23888067
Oecologia. 2002 Sep;133(1):19-29
pubmed: 24599365
Plant Physiol. 2016 Nov;172(3):1669-1678
pubmed: 27621427
New Phytol. 2016 Jan;209(1):123-36
pubmed: 26378984
New Phytol. 2018 May;218(3):1025-1035
pubmed: 29528498
New Phytol. 2018 Jul;219(1):77-88
pubmed: 29663388
Tree Physiol. 2009 Jun;29(6):765-75
pubmed: 19364707
Tree Physiol. 2013 Dec;33(12):1296-307
pubmed: 24319028
Oecologia. 2016 Apr;180(4):1091-102
pubmed: 26678990
Nature. 2012 Nov 29;491(7426):752-5
pubmed: 23172141
Plant Physiol. 2016 Jun;171(2):1024-36
pubmed: 27208267
New Phytol. 2011 May;190(3):709-23
pubmed: 21054413

Auteurs

Adriano Losso (A)

Department of Botany, University of Innsbruck, Sternwarterstrasse 15, Innsbruck, A-6020, Austria.

Andreas Bär (A)

Department of Botany, University of Innsbruck, Sternwarterstrasse 15, Innsbruck, A-6020, Austria.

Birgit Dämon (B)

Department of Botany, University of Innsbruck, Sternwarterstrasse 15, Innsbruck, A-6020, Austria.

Christian Dullin (C)

Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Robert-Koch-Straße 40, Göttingen, 37075, Germany.
Max-Plank-Institute for Experimental Medicine, Hermann-Rein-Straße 3, Göttingen, 37075, Germany.
Elettra-Sincrotrone Trieste, Area Science Park, Trieste, Basovizza, 34149, Italy.

Andrea Ganthaler (A)

Department of Botany, University of Innsbruck, Sternwarterstrasse 15, Innsbruck, A-6020, Austria.

Francesco Petruzzellis (F)

Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy.

Tadeja Savi (T)

Department of Crop Sciences, Division of Viticulture and Pomology, University of Natural Resources and Life Sciences Vienna, Konrad Lorenzstrasse 24, Tulln, A-3430, Austria.

Giuliana Tromba (G)

Elettra-Sincrotrone Trieste, Area Science Park, Trieste, Basovizza, 34149, Italy.

Andrea Nardini (A)

Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, Trieste, 34127, Italy.

Stefan Mayr (S)

Department of Botany, University of Innsbruck, Sternwarterstrasse 15, Innsbruck, A-6020, Austria.

Barbara Beikircher (B)

Department of Botany, University of Innsbruck, Sternwarterstrasse 15, Innsbruck, A-6020, Austria.

Articles similaires

Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Hemiarthroplasty in young patients.

Hazimah Mahmud, Dong Wang, Andra Topan-Rat et al.
1.00
Humans Male Hemiarthroplasty Middle Aged Aged
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH