Spontaneous premature birth as a target of genomic research.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
03 2019
03 2019
Historique:
received:
28
05
2018
accepted:
23
08
2018
revised:
20
08
2018
pubmed:
26
10
2018
medline:
17
6
2020
entrez:
25
10
2018
Statut:
ppublish
Résumé
Spontaneous preterm birth is a serious and common pregnancy complication associated with hormonal dysregulation, infection, inflammation, immunity, rupture of fetal membranes, stress, bleeding, and uterine distention. Heredity is 25-40% and mostly involves the maternal genome, with contribution of the fetal genome. Significant discoveries of candidate genes by genome-wide studies and confirmation in independent replicate populations serve as signposts for further research. The main task is to define the candidate genes, their roles, localization, regulation, and the associated pathways that influence the onset of human labor. Genomic research has identified some candidate genes that involve growth, differentiation, endocrine function, immunity, and other defense functions. For example, selenocysteine-specific elongation factor (EEFSEC) influences synthesis of selenoproteins. WNT4 regulates decidualization, while a heat-shock protein family A (HSP70) member 1 like, HSPAIL, influences expression of glucocorticoid receptor and WNT4. Programming of pregnancy duration starts before pregnancy and during placentation. Future goals are to understand the interactive regulation of the pathways in order to define the clocks that influence the risk of prematurity and the duration of pregnancy. Premature birth has a great impact on the duration and the quality of life. Intensification of focused research on causes, prediction and prevention of prematurity is justified.
Identifiants
pubmed: 30353040
doi: 10.1038/s41390-018-0180-z
pii: 10.1038/s41390-018-0180-z
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
422-431Commentaires et corrections
Type : CommentIn
Références
Blencowe, H. et al. Preterm birth-associated neurodevelopmental impairment estimates at regional and global levels for 2010. Pediatr. Res. 74(Suppl 1), 17–34 (2013).
pubmed: 24366461
pmcid: 3873710
Yoshida, S. et al. Setting research priorities to improve global newborn health and prevent stillbirths by 2025. J. Glob. Health 6, 010508 (2016).
pubmed: 26401272
Goldenberg, R. L., Culhane, J. F., Iams, J. D. & Romero, R. Epidemiology and causes of preterm birth. Lancet 371, 75–84 (2008).
pubmed: 18177778
Muglia, L. J. & Katz, M. The enigma of spontaneous preterm birth. N. Engl. J. Med. 362, 529–535 (2010).
pubmed: 20147718
Al Jishi, T. & Sergi, C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod. Toxicol. 71, 71–77 (2017).
pubmed: 28461243
Troisi, R., Hatch, E. E. & Titus, L. The diethylstilbestrol legacy: a powerful case against intervention in uncomplicated pregnancy. Pediatrics 138(Suppl 1), S42–S44 (2016).
pubmed: 27940976
pmcid: 5080866
Stewart, L. A. et al. Evaluating progestogens for prevention of preterm birth international collaborative (EPPPIC) individual participant data (IPD) meta-analysis: protocol. Syst. Rev. 6, 235 (2017).
pubmed: 29183399
pmcid: 5706301
Smid, M. C., Stringer, E. M. & Stringer, J. S. A worldwide epidemic: the problem and challenges of preterm birth in low- and middle-income countries. Am. J. Perinatol. 33, 276–289 (2016).
pubmed: 26841086
Lunde, A., Melve, K. K., Gjessing, H. K., Skjaerven, R. & Irgens, L. M. Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am. J. Epidemiol. 165, 734–774 (2007).
pubmed: 17311798
Wilcox, A. J., Skjaerven, R. & Lie, R. T. Familial patterns of preterm delivery: maternal and fetal contributions. Am. J. Epidemiol. 167, 474–479 (2008).
pubmed: 18048376
Romero, R., Dey, S. K. & Fisher, S. J. Preterm labor: one syndrome, many causes. Science 345, 760–765 (2014).
pubmed: 25124429
pmcid: 4191866
Adams Waldorf, K. M. et al. Uterine overdistention induces preterm labor mediated by inflammation: observations in pregnant women and nonhuman primates. Am. J. Obstet. Gynecol. 213, 830.e1–830.e19 (2015).
Renthal, N. E., Williams, K. C. & Mendelson, C. R. MicroRNAs--mediators of myometrial contractility during pregnancy and labour. Nat. Rev. Endocrinol. 9, 391–401 (2013).
pubmed: 23669656
Hadley, C. B. 1, Main, D. M. & Gabbe, S. G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 7, 374–379 (1990).
pubmed: 2222633
Kim, C. J. et al. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am. J. Obstet. Gynecol. 213, S53–S69 (2015).
pubmed: 26428503
pmcid: 4782598
Bonney, E. A. Alternative theories: Pregnancy and immune tolerance. J. Reprod. Immunol. 123, 65–71 (2017).
pubmed: 28941880
Hillhouse, E. W. & Grammatopoulos, D. K. Role of stress peptides during human pregnancy and labour. Reproduction 124, 323–329 (2002).
pubmed: 12201805
Velez Edwards, D. R., Baird, D. D., Hasan, R., Savitz, D. A. & Hartmann, K. E. First-trimester bleeding characteristics associate with increased risk of preterm birth: data from a prospective pregnancy cohort. Hum. Reprod. 27, 54–60 (2012).
pubmed: 22052384
Schatz, F., Guzeloglu-Kayisli, O., Arlier, S., Kayisli, U. A. & Lockwood, C. J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum. Reprod. Update 22, 497–515 (2016).
pubmed: 26912000
pmcid: 4917742
Morgan, T. K. Role of the placenta in preterm birth: a review. Am. J. Perinatol. 33, 258–266 (2016).
pubmed: 26731184
Mendelson, C. R., Montalbano, A. P. & Gao, L. Fetal-to-maternal signaling in the timing of birth. J. Steroid Biochem. Mol. Biol. 170, 19–27 (2017).
pubmed: 27629593
Hallman, M., Arjomaa, P., Mizumoto, M. & Akino, T. Surfactant proteins in the diagnosis of fetal lung maturity. I. Predictive accuracy of the 35 kD protein, the lecithin/sphingomyelin ratio, and phosphatidylglycerol. Am. J. Obstet. Gynecol. 158, 531–535 (1988).
pubmed: 3348313
Hallman, M. The surfactant system protects both fetus and newborn. Neonatology 103, 320–326 (2013).
pubmed: 23736009
Byrns, M. C. Regulation of progesterone signaling during pregnancy: implications for the use of progestins for the prevention of preterm birth. J. Steroid Biochem. Mol. Biol. 139, 173–181 (2014).
pubmed: 23410596
Mesiano, S. et al. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J. Clin. Endocrinol. Metab. 87, 2924–2930 (2002).
pubmed: 12050275
Patel, B. et al. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum. Reprod. Update 21, 155–173 (2015).
pubmed: 25406186
Petraglia, F., Imperatore, A. & Challis, J. R. Neuroendocrine mechanisms in pregnancy and parturition. Endocr. Rev. 31, 783–816 (2010).
pubmed: 20631004
Renthal N. E., et al. Molecular regulation of parturition: a myometrial perspective. Cold Spring Harb. Perspect. Med. 5, pii: a023069 (2015).
Menon, R., Bonney, E. A., Condon, J., Mesiano, S. & Taylor, R. N. Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum. Reprod. Update 22, 535–560 (2016).
pubmed: 27363410
pmcid: 5001499
Iams, J. D., Romero, R., Culhane, J. F. & Goldenberg, R. L. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet 371, 164–175 (2008).
pubmed: 18191687
Kenyon, S., Boulvain, M. & Neilson, J. P. Antibiotics for preterm rupture of membranes. Cochrane Database Syst. Rev. 12, CD001058 (2013).
Ruiz, L., Moles, L., Gueimonde, M. & Rodriguez, J. M. Perinatal microbiomes’ influence on preterm birth and preterms’ health: influencing factors and modulation strategies. J. Pediatr. Gastroenterol. Nutr. 63, e193–e203 (2016).
pubmed: 27019409
Haas, D. M., Caldwell, D. M., Kirkpatrick, P., McIntosh, J. J. & Welton, N. J. Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. Brit. Med. J. 345, e6226 (2012).
pubmed: 23048010
Romero, R. et al. Vaginal progesterone decreases preterm birth and neonatal morbidity and mortality in women with a twin gestation and a short cervix: an updated meta‐analysis of individual patient data. Ultrasound Obstet. Gynecol. 49, 303–314 (2017).
pubmed: 28067007
pmcid: 5396280
Romero, R. et al. Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: meta-analysis of individual patient data. Am. J. Obstet. Gynecol. 218, 161–180 (2018).
pubmed: 29157866
Norman, J. E. et al. Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, randomised, double-blind trial. Lancet 387, 2106–2116 (2016).
pubmed: 26921136
pmcid: 5406617
Norman, J. E. et al. Does progesterone prophylaxis to prevent preterm labour improve outcome? A randomized double-blind placebo-controlled trial (OPPTIMUM). Health Technol. Assess. 22, 1–304 (2018).
pubmed: 29945711
pmcid: 6036405
Bezold, K. Y., Karjalainen, M. K., Hallman, M., Teramo, K. & Muglia, L. J. The genomics of preterm birth: from animal models to human studies. Genome Med. 5, 34 (2013).
pubmed: 23673148
pmcid: 3707062
York, T. P., Strauss, J. F. 3rd, Neale, M. C. & Eaves, L. J. Estimating fetal and maternal genetic contributions to premature birth from multiparous pregnancy histories of twins using MCMC and maximum-likelihood approaches. Twin Res Hum. Genet 12, 333–342 (2009).
pubmed: 19653833
pmcid: 2913409
Alleman, B. W. et al. No observed association for mitochondrial SNPs with preterm delivery and related outcomes. Pediatr. Res. 72, 539–544 (2012).
pubmed: 22902432
pmcid: 3694399
Manuck, T. A. et al. Absence of mitochondrial progesterone receptor polymorphisms in women with spontaneous preterm birth. Reprod. Sci. 17, 913–916 (2010).
pubmed: 20693499
pmcid: 3210024
Velez, D. R. et al. Mitochondrial DNA variant A4917G, smoking and spontaneous preterm birth. Mitochondrion 8, 130–135 (2008).
pubmed: 18082471
Zhang, G. et al. Genetic associations with gestational duration and spontaneous preterm birth. N. Engl. J. Med. 377, 1156–1167 (2017).
pubmed: 28877031
Rosenberg, N. A. et al. Genome-wide association studies in diverse populations. Nat. Rev. Genet. 11, 356–366 (2010).
pubmed: 20395969
pmcid: 3079573
Parets, S. E., Conneely, K. N., Kilaru, V., Menon, R. & Smith, A. K. DNA methylation provides insight into intergenerational risk for preterm birth in African Americans. Epigenetics 10, 784–792 (2015).
pubmed: 26090903
pmcid: 4622997
Palo, J. U., Ulmanen, I., Lukka, M., Ellonen, P. & Sajantila, A. Genetic markers and population history: Finland revisited. Eur. J. Hum. Genet. 17, 1336–1346 (2009).
pubmed: 19367325
pmcid: 2986642
Sheikh, I. A. et al. Spontaneous preterm birth and single nucleotide gene polymorphisms: a recent update. BMC Genom. 17(Suppl 9), 759 (2016).
Plunkett, J. & Muglia, L. J. Genetic contributions to preterm birth: implications from epidemiological and genetic association studies. Ann. Med. 40, 167–195 (2008).
pubmed: 18382883
Rood, K. M. & Buhimschi, C. S. Genetics, hormonal influences, and preterm birth. Semin. Perinatol. 41, 401–408 (2017).
pubmed: 28886866
Strauss, J. F. et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am. J. Obstet. Gynecol. 218, 294–314 (2018).
pubmed: 29248470
Singh, A. J., Ramsey, S. A., Filtz, T. M. & Kioussi, C. Differential gene regulatory networks in development and disease. Cell. Mol. Life Sci. 75, 1013–1025 (2017).
pubmed: 29018868
Prince, A. L. et al. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis. Am. J. Obstet. Gynecol. 214, 627.e16 (2016).
Nelson, D. B., Shin, H., Wu, J. & Dominguez-Bello, M. G. The gestational vaginal microbiome and spontaneous preterm birth among Nulliparous African American women. Am. J. Perinatol. 33, 887–893 (2016).
pubmed: 27057772
Dahl, C. et al. Gut microbiome of mothers delivering prematurely shows reduced diversity and lower relative abundance of Bifidobacterium and Streptococcus. PLoS ONE 12, e0184336 (2017).
pubmed: 29069100
pmcid: 5656300
Haataja, R. et al. Mapping a new spontaneous preterm birth susceptibility gene, IGF1R, using linkage, haplotype sharing, and association analysis. PLoS Genet. 7, e1001293 (2011).
pubmed: 21304894
pmcid: 3033387
Uzun, A., Dewan, A. T., Istrail, S. & Padbury, J. F. Pathway-based genetic analysis of preterm birth. Genomics 101, 163–170 (2013).
pubmed: 23298525
pmcid: 3570639
Rahkonen, L. et al. Elevated levels of decidual insulin-like growth factor binding protein-1 in cervical fluid in early and mid-pregnancy are associated with an increased risk of spontaneous preterm delivery. BJOG 117, 701–710 (2010).
pubmed: 20374609
Conde-Agudelo, A. & Romero, R. Cervical phosphorylated insulin-like growth factor binding protein-1 test for the prediction of preterm birth: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 214, 57–73 (2016).
pubmed: 26149828
Karjalainen, M. K. et al. A potential novel spontaneous preterm birth gene, AR, identified by linkage and association analysis of X chromosomal markers. PLoS ONE 7, e51378 (2012).
pubmed: 23227263
pmcid: 3515491
Bethin, K. E. et al. Microarray analysis of uterine gene expression in mouse and human pregnancy. Mol. Endocrinol. 17, 1454–1469 (2003).
pubmed: 12775764
Makieva, S., Saunders, P. T. & Norman, J. E. Androgens in pregnancy: roles in parturition. Hum. Reprod. Update 20, 542–559 (2014).
pubmed: 24643344
pmcid: 4063701
Karjalainen, M. K. et al. CXCR3 polymorphism and expression associate with spontaneous preterm birth. J. Immunol. 195, 2187–2198 (2015).
pubmed: 26209629
McElroy, J. J. et al. Maternal coding variants in complement receptor 1 and spontaneous idiopathic preterm birth. Hum. Genet. 132, 935–942 (2013).
pubmed: 23591632
Uzun, A. et al. Targeted sequencing and meta-analysis of preterm birth. PLoS ONE 11, e0155021 (2016).
pubmed: 27163930
pmcid: 4862658
Modi, B. P. et al. Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes. PLoS ONE 12, e0174356 (2017).
pubmed: 28346524
pmcid: 5367779
Modi, B. P. et al. Mutations in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol. Genet. Genom. Med. 5, 720–729 (2017).
Zhang, H. et al. A genome-wide association study of early spontaneous preterm delivery. Genet. Epidemiol. 39, 217–226 (2015).
pubmed: 25599974
pmcid: 4366311
Bacelis, J. et al. Literature-informed analysis of a genome-wide association study of gestational age in Norwegian women and children suggests involvement of inflammatory pathways. PLoS ONE 11, e0160335 (2016).
pubmed: 27490719
pmcid: 4973994
Rappoport, N. et al. A genome-wide association study identifies only two ancestry specific variants associated with spontaneous preterm birth. Sci. Rep. 8, 226 (2018).
pubmed: 29317701
pmcid: 5760643
Plunkett, J. et al. An evolutionary genomic approach to identify genes involved in human birth timing. PLoS Genet. 7, e1001365 (2011).
pubmed: 21533219
pmcid: 3077368
Haapalainen, A. M. et al. Expression of CPPED1 in human trophoblasts is associated with timing of term birth. J. Cell. Mol. Med. 22, 968–981 (2018).
pubmed: 29193784
Zhuo, D. X. et al. CSTP1, a novel protein phosphatase, blocks cell cycle, promotes cell apoptosis, and suppresses tumor growth of bladder cancer by directly dephosphorylating Akt at Ser473 site. PLoS ONE 8, e65679 (2013).
pubmed: 23799035
pmcid: 3684612
Diep, C. H. et al. Progesterone receptors induce FOXO1-dependent senescence in ovarian cancer cells. Cell Cycle 12, 1433–1449 (2013).
pubmed: 23574718
pmcid: 3674071
Beaumont, R. N. et al. Genome-wide association study of offspring birth weight in 86577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum. Mol. Genet. 27, 742–756 (2018).
pubmed: 29309628
pmcid: 5886200
GOPEC Consortium. Disentangling fetal and maternal susceptibility for pre-eclampsia: a British multicenter candidate-gene study. Am. J. Hum. Genet. 77, 127–131 (2005).
pmcid: 1226184
Kaukola, T. et al. Population cohort associating chorioamnionitis, cord inflammatory cytokines and neurologic outcome in very preterm, extremely low birth weight infants. Pediatr. Res. 59, 478–483 (2006).
pubmed: 16492993
Marsál, K. Intrauterine growth restriction. Curr. Opin. Obstet. Gynecol. 14, 127–135 (2002).
pubmed: 11914689
Zeitlin, J., Ancel, P. Y., Saurel-Cubizolles, M. J. & Papiernik, E. The relationship between intrauterine growth restriction and preterm delivery: an empirical approach using data from a European case-control study. Br. J. Obstet. Gynecol. 107, 750–758 (2000).
Burk, R. F. & Hill, K. E. Regulation of Selenium metabolism and transport. Annu. Rev. Nutr. 35, 109–134 (2015).
pubmed: 25974694
Li, M. et al. Loss of selenocysteine insertion sequence binding protein 2 suppresses the proliferation, migration/invasion and hormone secretion of human trophoblast cells via the PI3K/Akt and ERK signaling pathway. Placenta 55, 81–89 (2017).
pubmed: 28623977
McDermott, J. R. et al. Zinc- and bicarbonate-dependent ZIP8 trasporter mediates selenite uptake. Oncotarget 7, 35327–35340 (2016).
pubmed: 27166256
pmcid: 5085232
MacFarquhar, J. K. et al. Acute selenium toxicity associated with a dietary supplement. Arch. Intern. Med. 170, 256–261 (2010).
pubmed: 20142570
pmcid: 3225252
Zhou, H., Wang, T., Li, Q. & Li, D. Prevention of Keshan disease by selenium supplementation: a systematic review and meta-analysis. Biol. Trace Elem. Res. https://doi.org/10.1007/s12011-018-1302-5 (2018).
Schweizer, U. & Fradejas-Villar, N. Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J. 30, 3669–3681 (2016).
pubmed: 27473727
Rayman, M. P., Wijnen, H., Vader, H., Kooistra, L. & Pop, V. Maternal selenium status during early gestation and risk for preterm birth. Can. Med. Assoc. J. 183, 549–555 (2011).
Hurst, R. et al. Soil-type influences human selenium status and underlies widespread selenium deficiency risks in Malawi. Sci. Rep. 3, 1425 (2013).
pubmed: 23478344
pmcid: 3594796
Olsen, P. et al. Epidemiology of preterm delivery in two birth cohorts with an interval of 20 years. Am. J. Epidemiol. 142, 1184–1193 (1995).
pubmed: 7485065
Knöfler, M. & Pollheimer, J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front. Genet. 4, 190 (2013).
Huusko, J. M. et al. Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet. 14, e1007394 (2018).
pubmed: 30001343
pmcid: 6042692
Zhang, G. et al. Assessing the causal relationship of maternal height on birth size and gestational age at birth: a mendelian randomization analysis. PLoS Med. 12, e1001865 (2015).
pubmed: 26284790
pmcid: 4540580