Animals
Chickens
Dogs
Glycosylation
Hemagglutinin Glycoproteins, Influenza Virus
/ chemistry
Humans
Immunodiffusion
Influenza A Virus, H1N1 Subtype
/ immunology
Influenza A Virus, H3N2 Subtype
/ immunology
Influenza B virus
/ immunology
Influenza Vaccines
/ immunology
Madin Darby Canine Kidney Cells
Sf9 Cells
Species Specificity
glycan masking
glycopeptide
mass spectrometry
vaccine
Journal
Journal of virology
ISSN: 1098-5514
Titre abrégé: J Virol
Pays: United States
ID NLM: 0113724
Informations de publication
Date de publication:
15 01 2019
15 01 2019
Historique:
received:
25
09
2018
accepted:
13
10
2018
pubmed:
26
10
2018
medline:
23
10
2019
entrez:
26
10
2018
Statut:
epublish
Résumé
Prior to each annual flu season, health authorities recommend three or four virus strains for inclusion in the annual influenza vaccine: a type A:H1N1 virus, a type A:H3N2 virus, and one or two type B viruses. Antigenic differences between strains are found in the glycosylation patterns of the major influenza virus antigen, hemagglutinin (HA). Here we examine the glycosylation patterns of seven reference antigens containing HA used in influenza vaccine potency testing. These reagents are supplied by the Center for Biologics Evaluation and Research (CBER) or the National Institute for Biological Standards and Control (NIBSC) for use in vaccine testing. Those produced in hen egg, Madin-Darby canine kidney (MDCK), and insect (Sf9) expression systems were examined. They are closely related or identical to antigens used in commercial vaccines. The reference antigens studied were used in the 2014-2015 influenza season and included A/California/07/2009 H1N1, A/Texas/50/2012 H3N2, and B/Massachusetts/02/2012. Released glycan and HA-specific glycopeptide glycosylation patterns were examined. We also examined the sensitivity of the single radial immunodiffusion (SRID) potency test to differences in HA antigen glycosylation. Based on deglycosylation studies applied using standard assay procedures, the SRID assay was not sensitive to any HA antigen glycosylation status from any cell system. Mapping of glycosites with their occupying glycan to functional regions, including antigenic sites, lectin interaction regions, and fusion domains, was performed and has implications for immune processing, immune responses, and antigenic shielding. Differences in glycosylation patterns, as dictated by the cell system used for expression, may impact these functions.
Identifiants
pubmed: 30355697
pii: JVI.01693-18
doi: 10.1128/JVI.01693-18
pmc: PMC6321900
pii:
doi:
Substances chimiques
Hemagglutinin Glycoproteins, Influenza Virus
0
Influenza Vaccines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Références
Am J Physiol. 1996 Nov;271(5 Pt 1):L753-62
pubmed: 8944718
Virology. 2015 Mar;477:18-31
pubmed: 25617824
Proc Natl Acad Sci U S A. 1983 Jul;80(14):4527-31
pubmed: 6192436
Virology. 2010 Jul 20;403(1):17-25
pubmed: 20441997
J Infect Dis. 1999 Sep;180(3):579-85
pubmed: 10438342
Biochem Biophys Res Commun. 1992 Sep 16;187(2):963-9
pubmed: 1530650
Proc Natl Acad Sci U S A. 2009 Oct 27;106(43):18137-42
pubmed: 19822741
Mol Biol Evol. 2004 Dec;21(12):2352-9
pubmed: 15356273
Nat Chem Biol. 2013 Dec;9(12):776-84
pubmed: 24231619
Mol Cell. 2003 Jan;11(1):79-90
pubmed: 12535523
Methods Mol Biol. 2009;534:53-64
pubmed: 19277536
PLoS Curr. 2009 Aug 18;1:RRN1001
pubmed: 20025194
Dev Biol Stand. 1986;64:73-9
pubmed: 3098606
J Virol. 2007 Aug;81(16):8593-600
pubmed: 17553891
J Virol. 2011 Mar;85(6):2990-3000
pubmed: 21191006
PLoS One. 2013;8(2):e56164
pubmed: 23424649
Glycobiology. 2015 Jan;25(1):124-32
pubmed: 25227423
Respir Res. 2008 Sep 23;9:65
pubmed: 18811961
Am J Respir Crit Care Med. 2011 Mar 15;183(6):767-73
pubmed: 20935106
Biochem Soc Symp. 1974;(40):17-26
pubmed: 4620382
J Gen Virol. 1982 Sep;62 (Pt 1):153-69
pubmed: 6182265
J Virol. 2012 Jan;86(2):982-90
pubmed: 22072785
J Clin Invest. 1994 Jul;94(1):311-9
pubmed: 8040272
PeerJ. 2017 Oct 11;5:e3915
pubmed: 29038764
J Am Soc Mass Spectrom. 2007 Oct;18(10):1799-812
pubmed: 17719235
Nature. 1981 Jan 29;289(5796):373-8
pubmed: 6162101
Nature. 1998 Dec 17;396(6712):695-9
pubmed: 9872320
Vet Microbiol. 1993 Nov;37(3-4):253-62
pubmed: 8116186
PLoS One. 2011;6(8):e23085
pubmed: 21857999
Curr Drug Targets. 2007 Oct;8(10):1116-25
pubmed: 17979671
J Biol Chem. 1998 Apr 24;273(17):10083-6
pubmed: 9553052
J Biol Chem. 2004 Dec 17;279(51):52893-903
pubmed: 15452127
Biochem Biophys Res Commun. 2008 Sep 5;373(4):561-6
pubmed: 18593570
Anal Biochem. 2011 Aug 1;415(1):67-80
pubmed: 21545787
Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779-83
pubmed: 6584912
Anal Chem. 2017 Sep 5;89(17):9508-9517
pubmed: 28792205
Nature. 1981 Apr 23;290(5808):713-7
pubmed: 6163993
J Proteome Res. 2015 Sep 4;14(9):3957-69
pubmed: 26202417
J Virol. 2012 Apr;86(7):3446-51
pubmed: 22258255
J Virol. 1993 Jun;67(6):3048-60
pubmed: 8497042
BMC Infect Dis. 2015 Feb 26;15:101
pubmed: 25887952
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):12578-12583
pubmed: 29109276
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15029-34
pubmed: 14657390
Curr Opin Immunol. 1998 Feb;10(1):93-102
pubmed: 9523118
J Exp Med. 1996 Feb 1;183(2):527-34
pubmed: 8627164
PLoS Pathog. 2017 Oct 23;13(10):e1006682
pubmed: 29059230
Science. 2001 Mar 23;291(5512):2370-6
pubmed: 11269318
Sci Transl Med. 2010 Mar 24;2(24):24ra21
pubmed: 20375007
J Virol. 2012 Nov;86(21):11735-44
pubmed: 22915811
J Proteome Res. 2013 Aug 2;12(8):3707-20
pubmed: 23848607
Biologicals. 2012 Jan;40(1):96-9
pubmed: 22244521
Sci Rep. 2016 Oct 31;6:36216
pubmed: 27796371
BMC Infect Dis. 2010 Jan 07;10:5
pubmed: 20059763
J Immunol. 2008 Dec 1;181(11):7936-43
pubmed: 19017984
Cell. 1982 Dec;31(2 Pt 1):417-27
pubmed: 6186384
J Virol. 1997 May;71(5):3719-25
pubmed: 9094646
Curr Opin Biotechnol. 1998 Oct;9(5):528-33
pubmed: 9821284
Virol J. 2012 May 08;9:91
pubmed: 22569196
Virology. 2013 Nov;446(1-2):112-22
pubmed: 24074573