Transfection efficiency and cytotoxicity of polyethyleneimine-coated magnetic iron oxide nanoparticles in rooster sperm cells.
lipofection
magnetic iron oxide nanoparticles
magnetofection
rooster spermatozoa
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
Feb 2019
Feb 2019
Historique:
received:
01
11
2017
accepted:
04
04
2018
pubmed:
27
10
2018
medline:
27
10
2018
entrez:
27
10
2018
Statut:
ppublish
Résumé
Since the morphology of the rooster spermatozoa is different to other animal spermatozoa, the aim of the current study was to investigate the transfection efficiency and cytotoxicity of polyethyleneimine (PEI) coated magnetic iron oxide nanoparticles (MION) on these cells. Liposome/nucleic acid (NA) complexes and PEI-coated MION linked to the labeled oligonucleotides were used. Viability and percentage of exogenous nucleic acid uptake of spermatozoa were measured by flow cytometry analyses. The results showed a significant increase in exogenous nucleic acid uptake by rooster spermatozoa (P < 0.001) when treated with MION-NA complexes in comparison to liposome/NA. There were no significant differences between efficiency of lipid-based transfection agent and MION (P > 0.05) during short incubation period. MION with or without magnetic field, did not show significant cytotoxicity while the lipid-based transfection agent significantly decreased (P < 0.05) the viability of rooster spermatozoa. Results of this study showed that magnetofection and lipofection were both effective methods which increased exogenous nucleic acid uptake by rooster spermatozoa. However, the magnetofection method was more successful in maintaining the cell's survival than lipofection method.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1185-1192Subventions
Organisme : University of Isfahan
ID : 80167/90
Informations de copyright
© 2018 Wiley Periodicals, Inc.