Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective.
Journal
Pediatric research
ISSN: 1530-0447
Titre abrégé: Pediatr Res
Pays: United States
ID NLM: 0100714
Informations de publication
Date de publication:
01 2019
01 2019
Historique:
received:
17
07
2018
accepted:
15
10
2018
revised:
11
10
2018
pubmed:
28
10
2018
medline:
3
4
2020
entrez:
28
10
2018
Statut:
ppublish
Résumé
Perinatal brain injury is a leading cause of death and disability in young children. Recent advances in obstetrics, reproductive medicine and neonatal intensive care have resulted in significantly higher survival rates of preterm or sick born neonates, at the price of increased prevalence of neurological, behavioural and psychiatric problems in later life. Therefore, the current focus of experimental research shifts from immediate injury processes to the consequences for brain function in later life. The aetiology of perinatal brain injury is multi-factorial involving maternal and also labour-associated factors, including not only placental insufficiency and hypoxia-ischaemia but also exposure to high oxygen concentrations, maternal infection yielding excess inflammation, genetic factors and stress as important players, all of them associated with adverse long-term neurological outcome. Several animal models addressing these noxious stimuli have been established in the past to unravel the underlying molecular and cellular mechanisms of altered brain development. In spite of substantial efforts to investigate short-term consequences, preclinical evaluation of the long-term sequelae for the development of cognitive and neuropsychiatric disorders have rarely been addressed. This review will summarise and discuss not only current evidence but also requirements for experimental research providing a causal link between insults to the developing brain and long-lasting neurodevelopmental disorders.
Identifiants
pubmed: 30367160
doi: 10.1038/s41390-018-0222-6
pii: 10.1038/s41390-018-0222-6
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
198-215Références
Levine, S. Infantile experience and resistance to physiological stress. Science 126, 405 (1957).
pubmed: 13467220
Pascal, A. et al. Neurodevelopmental outcome in very preterm and very-low-birthweight infants born over the past decade: a meta-analytic review. Dev. Med. Child Neurol. 60, 342–355 (2018).
pubmed: 29350401
Johnson, S. & Marlow, N. Growing up after extremely preterm birth: lifespan mental health outcomes. Semin. Fetal Neonatal Med. 19, 97–104 (2014).
pubmed: 24290907
Beydoun, H. & Saftlas, A. F. Physical and mental health outcomes of prenatal maternal stress in human and animal studies: a review of recent evidence. Paediatr. Perinat. Epidemiol. 22, 438–466 (2008).
pubmed: 18782252
Buss, C., Entringer, S., Swanson, J. M. & Wadhwa, P. D. The role of stress in brain development: the gestational environment’s long-term effects on the brain. Cerebrum 2012, 4 (2012).
pubmed: 23447790
pmcid: 3574809
Aizer, A., Stroud, L. & Buka, S. Maternal stress and child outcomes: evidence from siblings. J. Hum. Resour. 51, 523–555 (2016).
pubmed: 29118458
pmcid: 5673140
Buss, C., Davis, E. P., Muftuler, L. T., Head, K. & Sandman, C. A. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinology 35, 141–153 (2010).
pubmed: 19674845
pmcid: 2795128
Piccolo, L. R., Noble, K. G., Pediatric Imaging, N. & Genetics, S. Perceived stress is associated with smaller hippocampal volume in adolescence. Psychophysiology 55, e13025 (2018).
pubmed: 29053191
Laloux, C. et al. Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology 37, 1646–1658 (2012).
pubmed: 22444623
Lemaire, V., Koehl, M., Le Moal, M. & Abrous, D. N. Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc. Natl Acad. Sci. USA 97, 11032–11037 (2000).
pubmed: 11005874
Patin, V., Lordi, B., Vincent, A. & Caston, J. Effects of prenatal stress on anxiety and social interactions in adult rats. Brain Res. Dev. Brain Res. 160, 265–274 (2005).
pubmed: 16290208
Weinstock, M. Prenatal stressors in rodents: effects on behavior. Neurobiol. Stress 6, 3–13 (2017).
pubmed: 28229104
Glover, V., O’Connor, T. G. & O’Donnell, K. Prenatal stress and the programming of the HPA axis. Neurosci. Biobehav. Rev. 35, 17–22 (2010).
pubmed: 19914282
Neeley, E. W., Berger, R., Koenig, J. I. & Leonard, S. Strain dependent effects of prenatal stress on gene expression in the rat hippocampus. Physiol. Behav. 104, 334–339 (2011).
pubmed: 21382392
pmcid: 3118943
Stevens, H. E., Su, T., Yanagawa, Y. & Vaccarino, F. M. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex. Psychoneuroendocrinology 38, 509–521 (2013).
pubmed: 22910687
Fukumoto, K. et al. Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol. Psychiatry 14, 1119–1131 (2009).
pubmed: 19564873
Ulupinar, E., Yucel, F. & Ortug, G. The effects of prenatal stress on the Purkinje cell neurogenesis. Neurotoxicol. Teratol. 28, 86–94 (2006).
pubmed: 16325372
Abbott, P. W., Gumusoglu, S. B., Bittle, J., Beversdorf, D. Q. & Stevens, H. E. Prenatal stress and genetic risk: how prenatal stress interacts with genetics to alter risk for psychiatric illness. Psychoneuroendocrinology 90, 9–21 (2018).
pubmed: 29407514
Jones, K. L. et al. Combined effect of maternal serotonin transporter genotype and prenatal stress in modulating offspring social interaction in mice. Int. J. Dev. Neurosci. 28, 529–536 (2010).
pubmed: 20470877
pmcid: 2918686
Matsui, F. et al. DHA mitigates autistic behaviors accompanied by dopaminergic change in a gene/prenatal stress mouse model. Neuroscience 371, 407–419 (2018).
pubmed: 29288796
Daniels, W. M., Pietersen, C. Y., Carstens, M. E. & Stein, D. J. Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab. Brain Dis. 19, 3–14 (2004).
pubmed: 15214501
Rincon-Cortes, M. & Sullivan, R. M. Emergence of social behavior deficit, blunted corticolimbic activity and adult depression-like behavior in a rodent model of maternal maltreatment. Transl. Psychiatry 6, e930 (2016).
pubmed: 27779623
pmcid: 5290349
Yang, Y. et al. Neonatal maternal separation impairs prefrontal cortical myelination and cognitive functions in rats through activation of Wnt signaling. Cereb. Cortex 27, 2871–2884 (2017).
pubmed: 27178192
Lenz, K. M. & Nelson, L. H. Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front. Immunol. 9, 698 (2018).
pubmed: 29706957
pmcid: 5908908
Mallard, C., Tremblay, M. E. & Vexler, Z. S. Microglia and neonatal brain injury. Neuroscience https://doi.org/10.1016/j.neuroscience.2018.01.023 (2018).
Mottahedin, A. et al. Effect of neuroinflammation on synaptic organization and function in the developing brain: implications for neurodevelopmental and neurodegenerative disorders. Front. Cell. Neurosci. 11, 190 (2017).
pubmed: 28744200
pmcid: 5504097
Herzog, M., Cerar, L. K., Srsen, T. P., Verdenik, I. & Lucovnik, M. Impact of risk factors other than prematurity on periventricular leukomalacia. A population-based matched case control study. Eur. J. Obstet. Gynecol. Reprod. Biol. 187, 57–59 (2015).
pubmed: 25748489
Smid, M. C. et al. Maternal super obesity and neonatal morbidity after term cesarean delivery. Am. J. Perinatol. 33, 1198–1204 (2016).
pubmed: 27464019
Rivera, H. M., Christiansen, K. J. & Sullivan, E. L. The role of maternal obesity in the risk of neuropsychiatric disorders. Front. Neurosci. 9, 194 (2015).
pubmed: 26150767
pmcid: 4471351
Edlow, A. G. Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenat. Diagn. 37, 95–110 (2017).
pubmed: 27684946
Kang, S. S., Kurti, A., Fair, D. A. & Fryer, J. D. Dietary intervention rescues maternal obesity induced behavior deficits and neuroinflammation in offspring. J. Neuroinflamm. 11, 156 (2014).
Giriko, C. A. et al. Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet. Int. J. Dev. Neurosci. 31, 731–739 (2013).
pubmed: 24071008
Sasaki, A., de Vega, W. C., St-Cyr, S., Pan, P. & McGowan, P. O. Perinatal high fat diet alters glucocorticoid signaling and anxiety behavior in adulthood. Neuroscience 240, 1–12 (2013).
pubmed: 23454542
Thompson, J. R. et al. Maternal diet, metabolic state, and inflammatory response exert unique and long-lasting influences on offspring behavior in non-human primates. Front Endocrinol. (Lausanne) 9, 161 (2018).
pmcid: 5924963
Tozuka, Y. et al. Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem. Int. 57, 235–247 (2010).
pubmed: 20538025
Wolfrum, C. & Peleg-Raibstein, D. Maternal overnutrition leads to cognitive and neurochemical abnormalities in C57BL/6 mice. Nutr. Neurosci.1–12 (2018).
Madan, J. C. et al. Maternal obesity and markers of inflammation in pregnancy. Cytokine 47, 61–64 (2009).
pubmed: 19505831
Rizzo, G. S. & Sen, S. Maternal obesity and immune dysregulation in mother and infant: a review of the evidence. Paediatr. Respir. Rev. 16, 251–257 (2015).
pubmed: 25454382
Miller, S. L., Huppi, P. S. & Mallard, C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 594, 807–823 (2016).
pubmed: 4753264
pmcid: 4753264
Johnson, S., Wolke, D., Hennessy, E. & Marlow, N. Educational outcomes in extremely preterm children: neuropsychological correlates and predictors of attainment. Dev. Neuropsychol. 36, 74–95 (2011).
pubmed: 21253992
Lohaugen, G. C. et al. Cognitive profile in young adults born preterm at very low birthweight. Dev. Med. Child Neurol. 52, 1133–1138 (2010).
pubmed: 21175467
Lund, L. K. et al. Mental health, quality of life and social relations in young adults born with low birth weight. Health Qual. Life Outcomes 10, 146 (2012).
pubmed: 23216805
pmcid: 3541130
Nosarti, C. et al. Preterm birth and structural brain alterations in early adulthood. Neuroimage Clin. 6, 180–191 (2014).
pubmed: 25379430
pmcid: 4215396
Olsen, A. et al. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. Neuroimage 167, 419–428 (2018).
pubmed: 29191480
Rimol, L. M. et al. Cortical trajectories during adolescence in preterm born teenagers with very low birthweight. Cortex 75, 120–131 (2016).
pubmed: 26773236
Alexander, B. T. et al. Reduced uterine perfusion pressure during pregnancy in the rat is associated with increases in arterial pressure and changes in renal nitric oxide. Hypertension 37, 1191–1195 (2001).
pubmed: 11304523
Intapad, S. et al. Reduced uterine perfusion pressure induces hypertension in the pregnant mouse. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1353–R1357 (2014).
pubmed: 25298513
pmcid: 4254941
Golic, M. et al. Diabetes mellitus in pregnancy leads to growth restriction and epigenetic modification of the Srebf2 gene in rat fetuses. Hypertension 71, 911–920 (2018).
pubmed: 29610268
Jones, P. B., Rantakallio, P., Hartikainen, A. L., Isohanni, M. & Sipila, P. Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: a 28-year follow-up of the 1966 north Finland general population birth cohort. Am. J. Psychiatry 155, 355–364 (1998).
pubmed: 9501745
Sorensen, H. J., Mortensen, E. L., Reinisch, J. M. & Mednick, S. A. Do hypertension and diuretic treatment in pregnancy increase the risk of schizophrenia in offspring? Am. J. Psychiatry 160, 464–468 (2003).
pubmed: 12611826
Mallard, E. C., Rehn, A., Rees, S., Tolcos, M. & Copolov, D. Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr. Res. 40, 11–21 (1999).
pubmed: 10541002
Piorkowska, K. et al. Synaptic development and neuronal myelination are altered with growth restriction in fetal guinea pigs. Dev. Neurosci. 36, 465–476 (2014).
Rehn, A. E. et al. An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Neuroscience 129, 381–391 (2004).
pubmed: 15501595
Tolcos, M. et al. Intrauterine growth restriction affects cerebellar granule cells in the developing guinea pig brain. Dev. Neurosci. 40, 162–174 (2018).
pubmed: 29763885
Camprubi Camprubi, M. et al. Learning and memory disabilities in IUGR babies: functional and molecular analysis in a rat model. Brain Behav. 7, e00631 (2017).
pubmed: 28293472
pmcid: 5346519
Duran Fernandez-Feijoo, C. et al. Influence of catch up growth on spatial learning and memory in a mouse model of intrauterine growth restriction. PLoS ONE 12, e0177468 (2017).
pubmed: 28542302
pmcid: 5443512
Kurinczuk, J. J., White-Koning, M. & Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 329–338 (2010).
Azzopardi, D. et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N. Engl. J. Med. 371, 140–149 (2014).
pubmed: 25006720
de Haan, M. et al. Brain and cognitive-behavioural development after asphyxia at term birth. Dev. Sci. 9, 350–358 (2006).
pubmed: 16764608
Marlow, N., Rose, A. S., Rands, C. E. & Draper, E. S. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 90, F380–F387 (2005).
pubmed: 16113154
pmcid: 1721935
Darmency-Stamboul, V. et al. Antenatal factors associated with perinatal arterial ischemic stroke. Stroke 43, 2307–2312 (2012).
pubmed: 22738921
Greenham, M. et al. Early predictors of psychosocial functioning 5 years after paediatric stroke. Dev. Med. Child Neurol. 59, 1034–1041 (2017).
pubmed: 28815654
Grunt, S. et al. Incidence and outcomes of symptomatic neonatal arterial ischemic stroke. Pediatrics 135, e1220–e1228 (2015).
pubmed: 25896840
Klemme, M. et al. Neonatal arterial ischemic stroke - a hospital based active surveillance study in Germany. Klin. Padiatr. 229, 142–146 (2017).
pubmed: 28561226
Van Petten, C. Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia 42, 1394–1413 (2004).
pubmed: 15193947
Millar, L. J., Shi, L., Hoerder-Suabedissen, A. & Molnar, Z. Neonatal hypoxia ischaemia: mechanisms, models, and therapeutic challenges. Front. Cell. Neurosci. 11, 78 (2017).
pubmed: 28533743
pmcid: 5420571
Reinboth, B. S. et al. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice. Exp. Neurol. 283, 264–275 (2016).
pubmed: 27349408
Rice, J. E. 3rd, Vannucci, R. C. & Brierley, J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131–141 (1981).
Fan, L. W., Lin, S., Pang, Y., Rhodes, P. G. & Cai, Z. Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat. Eur. J. Neurosci. 24, 341–350 (2006).
pubmed: 16836639
Moran, J. et al. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic-ischemic brain injury. Exp. Neurol. 290, 74–84 (2017).
pubmed: 28062175
Herz, J. et al. Interaction between hypothermia and delayed mesenchymal stem cell therapy in neonatal hypoxic-ischemic brain injury. Brain Behav. Immun. 70, 118–130 (2018).
pubmed: 29454023
McAuliffe, J. J. et al. Desflurane, isoflurane, and sevoflurane provide limited neuroprotection against neonatal hypoxia-ischemia in a delayed preconditioning paradigm. Anesthesiology 111, 533–546 (2009).
pubmed: 19672176
Miguel, P. M. et al. Neonatal hypoxia-ischemia induces attention-deficit hyperactivity disorder-like behavior in rats. Behav. Neurosci. 129, 309–320 (2015).
pubmed: 26030430
Balduini, W., De Angelis, V., Mazzoni, E. & Cimino, M. Long-lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res. 859, 318–325 (2000).
pubmed: 10719080
Patel, S. D. et al. Therapeutic hypothermia and hypoxia-ischemia in the term-equivalent neonatal rat: characterization of a translational preclinical model. Pediatr. Res. 78, 264–271 (2015).
pubmed: 25996893
pmcid: 4543535
Tejkalova, H., Kaiser, M., Klaschka, J. & Stastny, F. Does neonatal brain ischemia induce schizophrenia-like behavior in young adult rats? Physiol. Res. 56, 815–823 (2007).
pubmed: 17087606
Robinson, S. et al. Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury. Exp. Neurol. 302, 1–13 (2018).
pubmed: 29288070
Castillo, A. et al. Pulse oxygen saturation levels and arterial oxygen tension values in newborns receiving oxygen therapy in the neonatal intensive care unit: is 85% to 93% an acceptable range? Pediatrics 121, 882–889 (2008).
pubmed: 18450890
Collins, M. P., Lorenz, J. M., Jetton, J. R. & Paneth, N. Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr. Res. 50, 712–719 (2001).
pubmed: 11726729
Reich, B., Hoeber, D., Bendix, I. & Felderhoff-Mueser, U. Hyperoxia and the immature brain. Dev. Neurosci. 38, 311–330 (2016).
pubmed: 28152539
Bendix, I. et al. Hyperoxia changes the balance of the thioredoxin/peroxiredoxin system in the neonatal rat brain. Brain Res. 1484, 68–75 (2012).
pubmed: 23006780
Brehmer, F. et al. Interaction of inflammation and hyperoxia in a rat model of neonatal white matter damage. PLoS ONE 7, e49023 (2012).
pubmed: 23155446
pmcid: 3498343
Dzietko, M. et al. A critical role for Fas/CD-95 dependent signaling pathways in the pathogenesis of hyperoxia-induced brain injury. Ann. Neurol. 64, 664–673 (2008).
pubmed: 19107989
Gerstner, B. et al. Hyperoxia causes maturation-dependent cell death in the developing white matter. J. Neurosci. 28, 1236–1245 (2008).
pubmed: 18234901
pmcid: 4305399
Pham, H. et al. Inhaled NO prevents hyperoxia-induced white matter damage in neonatal rats. Exp. Neurol. 252, 114–123 (2014).
pubmed: 24322053
Ritter, J. et al. Neonatal hyperoxia exposure disrupts axon-oligodendrocyte integrity in the subcortical white matter. J. Neurosci. 33, 8990–9002 (2013).
pubmed: 23699510
pmcid: 3742015
Schmitz, T. et al. Cellular changes underlying hyperoxia-induced delay of white matter development. J. Neurosci. 31, 4327–4344 (2011).
pubmed: 21411673
pmcid: 3092487
Serdar, M. et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia. Brain Behav. Immun. 52, 106–119 (2016).
pubmed: 26456693
Serdar, M. et al. Protection of oligodendrocytes through neuronal overexpression of the small GTPase Ras in hyperoxia-induced neonatal brain injury. Front. Neurol. 9, 175 (2018).
pubmed: 29619004
pmcid: 5871665
Sifringer, M. et al. Prevention of neonatal oxygen-induced brain damage by reduction of intrinsic apoptosis. Cell Death Dis. 3, e250 (2012).
pubmed: 22237207
pmcid: 3270267
Sifringer, M. et al. Oxygen toxicity is reduced by acetylcholinesterase inhibition in the developing rat brain. Dev. Neurosci. 35, 255–264 (2013).
pubmed: 23445753
Sifringer, M. et al. Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain. Brain Behav. Immun. 24, 792–799 (2010).
pubmed: 19729061
Sifringer, M. et al. Erythropoietin attenuates hyperoxia-induced cell death by modulation of inflammatory mediators and matrix metalloproteinases. Dev. Neurosci. 31, 394–402 (2009).
pubmed: 19672068
Vottier, G. et al. Deleterious effect of hyperoxia at birth on white matter damage in the newborn rat. Dev. Neurosci. 33, 261–269 (2011).
pubmed: 21659719
Hoeber, D. et al. Erythropoietin restores long-term neurocognitive function involving mechanisms of neuronal plasticity in a model of hyperoxia-induced preterm brain injury. Oxid. Med. Cell Longev. 2016, 9247493 (2016).
pubmed: 27493706
pmcid: 4963567
Schmitz, T. et al. Adolescent hyperactivity and impaired coordination after neonatal hyperoxia. Exp. Neurol. 235, 374–379 (2012).
pubmed: 22449476
Mitha, A. et al. Neonatal infection and 5-year neurodevelopmental outcome of very preterm infants. Pediatrics 132, e372–e380 (2013).
pubmed: 23878051
Kuban, K. C. et al. The breadth and type of systemic inflammation and the risk of adverse neurological outcomes in extremely low gestation newborns. Pediatr. Neurol. 52, 42–48 (2015).
pubmed: 25459361
Leviton, A. et al. The risk of neurodevelopmental disorders at age 10years associated with blood concentrations of interleukins 4 and 10 during the first postnatal month of children born extremely preterm. Cytokine 110, 181–188 (2018).
pubmed: 29763840
Estes, M. L. & McAllister, A. K. Maternal immune activation: Implications for neuropsychiatric disorders. Science 353, 772–777 (2016).
pubmed: 5650490
pmcid: 5650490
Knuesel, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat. Rev. Neurol. 10, 643–660 (2014).
pubmed: 25311587
Meyer, U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol. Psychiatry 75, 307–315 (2014).
pubmed: 23938317
Crum, W. R. et al. Evolution of structural abnormalities in the rat brain following in utero exposure to maternal immune activation: a longitudinal in vivo MRI study. Brain Behav. Immun. 63, 50–59 (2017).
pubmed: 27940258
pmcid: 5441572
Coiro, P. et al. Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav. Immun. 50, 249–258 (2015).
pubmed: 26218293
pmcid: 4955953
Giovanoli, S., Weber-Stadlbauer, U., Schedlowski, M., Meyer, U. & Engler, H. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies. Brain Behav. Immun. 55, 25–38 (2016).
pubmed: 26408796
Zhang, Z. & van Praag, H. Maternal immune activation differentially impacts mature and adult-born hippocampal neurons in male mice. Brain Behav. Immun. 45, 60–70 (2015).
pubmed: 25449671
Reisinger, S. et al. The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol. Ther. 149, 213–226 (2015).
pubmed: 25562580
Choi, G. B. et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 351, 933–939 (2016).
pubmed: 26822608
pmcid: 4782964
Ornaghi, S. et al. Valnoctamide inhibits cytomegalovirus infection in developing brain and attenuates neurobehavioral dysfunctions and brain abnormalities. J. Neurosci. 37, 6877–6893 (2017).
pubmed: 28630251
pmcid: 5518418
Meehan, C. et al. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain Behav. Immun. 63, 8–20 (2017).
pubmed: 27423491
Rose, D. R. et al. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation. Brain Behav. Immun. 63, 60–70 (2017).
pubmed: 27876552
Weir, R. K. et al. Preliminary evidence of neuropathology in nonhuman primates prenatally exposed to maternal immune activation. Brain Behav. Immun. 48, 139–146 (2015).
pubmed: 25816799
pmcid: 5671487
Gussenhoven, R. et al. Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. J. Neuroinflamm. 15, 113 (2018).
Meyer, U., Nyffeler, M., Yee, B. K., Knuesel, I. & Feldon, J. Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav. Immun. 22, 469–486 (2008).
pubmed: 18023140
Straley, M. E. et al. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation. Brain Behav. Immun. 63, 21–34 (2017).
pubmed: 27266391
Meyer, U., Feldon, J., Schedlowski, M. & Yee, B. K. Immunological stress at the maternal-foetal interface: a link between neurodevelopment and adult psychopathology. Brain Behav. Immun. 20, 378–388 (2006).
pubmed: 16378711
Meyer, U. et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J. Neurosci. 26, 4752–4762 (2006).
pubmed: 16672647
Craig, A. et al. Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp. Neurol. 181, 231–240 (2003).
pubmed: 12781996
Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M. & Noble-Haeusslein, L. J. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog. Neurobiol. 106-107, 1–16 (2013).
pubmed: 23583307
Drommelschmidt, K. et al. Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav. Immun. 60, 220–232 (2017).
pubmed: 27847282
Favrais, G. et al. Systemic inflammation disrupts the developmental program of white matter. Ann. Neurol. 70, 550–565 (2011).
pubmed: 21796662
Doenni, V. M., Song, C. M., Hill, M. N. & Pittman, Q. J. Early-life inflammation with LPS delays fear extinction in adult rodents. Brain Behav. Immun. 63, 176–185 (2017).
pubmed: 27888073
Feigenson, K. A., Kusnecov, A. W. & Silverstein, S. M. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 38, 72–93 (2014).
pubmed: 24247023
Girard, S., Kadhim, H., Beaudet, N., Sarret, P. & Sebire, G. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neuroscience 158, 673–682 (2009).
pubmed: 19010395
Jantzie, L. L. et al. Complex pattern of interaction between in utero hypoxia-ischemia and intra-amniotic inflammation disrupts brain development and motor function. J. Neuroinflamm. 11, 131 (2014).
Maxwell, J. R., Denson, J. L., Joste, N. E., Robinson, S. & Jantzie, L. L. Combined in utero hypoxia-ischemia and lipopolysaccharide administration in rats induces chorioamnionitis and a fetal inflammatory response syndrome. Placenta 36, 1378–1384 (2015).
pubmed: 26601766
Wang, X. et al. Dual role of intrauterine immune challenge on neonatal and adult brain vulnerability to hypoxia-ischemia. J. Neuropathol. Exp. Neurol. 66, 552–561 (2007).
pubmed: 17549015
van Tilborg, E. et al. Combined fetal inflammation and postnatal hypoxia causes myelin deficits and autism-like behavior in a rat model of diffuse white matter injury. Glia 66, 78–93 (2018).
pubmed: 28925578
Giovanoli, S. et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science 339, 1095–1099 (2013).
pubmed: 23449593
Arad, M., Piontkewitz, Y., Albelda, N., Shaashua, L. & Weiner, I. Immune activation in lactating dams alters sucklings’ brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: a novel neurodevelopmental model of sex-specific psychopathology. Brain Behav. Immun. 63, 35–49 (2017).
pubmed: 28189716
Abel, K. M., Drake, R. & Goldstein, J. M. Sex differences in schizophrenia. Int. Rev. Psychiatry 22, 417–428 (2010).
pubmed: 21047156
Goldstein, J. M., Holsen, L., Handa, R. & Tobet, S. Fetal hormonal programming of sex differences in depression: linking women’s mental health with sex differences in the brain across the lifespan. Front. Neurosci. 8, 247 (2014).
pubmed: 25249929
pmcid: 4157606
Makinson, R. et al. Intrauterine inflammation induces sex-specific effects on neuroinflammation, white matter, and behavior. Brain Behav. Immun. 66, 277–288 (2017).
pubmed: 28739513
Custodio, C. S. et al. Neonatal immune challenge with lipopolysaccharide triggers long-lasting sex- and age-related behavioral and immune/neurotrophic alterations in mice: relevance to autism spectrum disorders. Mol. Neurobiol. 55, 3775–3788 (2018).
pubmed: 28536974
Berger, S., Ronovsky, M., Horvath, O., Berger, A. & Pollak, D. D. Impact of maternal immune activation on maternal care behavior, offspring emotionality and intergenerational transmission in C3H/He mice. Brain Behav. Immun. 70, 131–140 (2018).
pubmed: 29481858
Ronovsky, M. et al. Maternal immune activation transgenerationally modulates maternal care and offspring depression-like behavior. Brain Behav. Immun. 63, 127–136 (2017).
pubmed: 27765645
Al Mamun, A., Yu, H., Romana, S. & Liu, F. Inflammatory responses are sex specific in chronic hypoxic-ischemic encephalopathy. Cell Transplant 27, 1328–1339 (2018).
Burnsed, J. C. et al. Hypoxia-ischemia and therapeutic hypothermia in the neonatal mouse brain--a longitudinal study. PLoS ONE 10, e0118889 (2015).
pubmed: 25774892
pmcid: 4361713
Johnson, S. A. et al. Effects of a maternal high-fat diet on offspring behavioral and metabolic parameters in a rodent model. J. Dev. Orig. Health Dis. 8, 75–88 (2017).
pubmed: 27609493
Goldstein, J. M. & Walder, D. J. in The Early Course of Schizophrenia (eds Sharma, T. & Harvey, P. D.) 666–671 (Oxford University Press, New York, 2006).
Benedusi, V. et al. A lack of ovarian function increases neuroinflammation in aged mice. Endocrinology 153, 2777–2788 (2012).
pubmed: 22492304
pmcid: 3359599
Gerstner, B. et al. 17beta-estradiol protects against hypoxic/ischemic white matter damage in the neonatal rat brain. J. Neurosci. Res. 87, 2078–2086 (2009).
pubmed: 19224575
pmcid: 2770176
Petrone, A. B., Gatson, J. W., Simpkins, J. W. & Reed, M. N. Non-feminizing estrogens: a novel neuroprotective therapy. Mol. Cell. Endocrinol. 389, 40–47 (2014).
pubmed: 24424441
pmcid: 4040321
Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 9, 37 (2015).
pubmed: 25750611
pmcid: 4335177
Gillies, G. E. & McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol. Rev. 62, 155–198 (2010).
pubmed: 20392807
pmcid: 2879914
Mirza, M. A., Ritzel, R., Xu, Y., McCullough, L. D. & Liu, F. Sexually dimorphic outcomes and inflammatory responses in hypoxic-ischemic encephalopathy. J. Neuroinflamm. 12, 32 (2015).
Li, H. et al. Sex differences in cell death. Ann. Neurol. 58, 317–321 (2005).
pubmed: 15988750
Reisert, I., Lieb, K., Beyer, C. & Pilgrim, C. Sex differentiation of rat hippocampal GABAergic neurons. Eur. J. Neurosci. 8, 1718–1724 (1996).
pubmed: 8921262
Patterson, P. H. Maternal infection and immune involvement in autism. Trends Mol. Med. 17, 389–394 (2011).
pubmed: 21482187
pmcid: 3135697
Weber-Stadlbauer, U. Epigenetic and transgenerational mechanisms in infection-mediated neurodevelopmental disorders. Transl. Psychiatry 7, e1113 (2017).
pubmed: 28463237
pmcid: 5534947
Estes, M. L. & McAllister, A. K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci. 16, 469–486 (2015).
pubmed: 26189694
pmcid: 5650494
Garay, P. A., Hsiao, E. Y., Patterson, P. H. & McAllister, A. K. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 31, 54–68 (2013).
pubmed: 22841693
Felderhoff-Mueser, U. et al. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann. Neurol. 57, 50–59 (2005).
pubmed: 15622543
Graf, A. E. et al. Maternal high fat diet exposure is associated with increased hepcidin levels, decreased myelination, and neurobehavioral changes in male offspring. Brain Behav. Immun. 58, 369–378 (2016).
pubmed: 27519153
pmcid: 5611850
Grayson, B. E. et al. Changes in melanocortin expression and inflammatory pathways in fetal offspring of nonhuman primates fed a high-fat diet. Endocrinology 151, 1622–1632 (2010).
pubmed: 20176722
pmcid: 2850229
Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl Acad. Sci. USA 113, E1738–E1746 (2016).
pubmed: 26884166
Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).
pubmed: 27338705
Fernandez de Cossio, L., Guzman, A., van der Veldt, S. & Luheshi, G. N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain Behav. Immun. 63, 88–98 (2017).
pubmed: 27697456
Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).
pubmed: 21778362
Zhan, Y. et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).
pubmed: 24487234
Krishnan, M. L. et al. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat. Commun. 8, 428 (2017).
pubmed: 28874660
pmcid: 5585205
Feyder, M. et al. Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am. J. Psychiatry 167, 1508–1517 (2010).
pubmed: 20952458
pmcid: 3146008
Delpech, J. C. et al. Early life stress perturbs the maturation of microglia in the developing hippocampus. Brain Behav. Immun. 57, 79–93 (2016).
pubmed: 27301858
pmcid: 5010940
van Velthoven, C. T., Kavelaars, A., van Bel, F. & Heijnen, C. J. Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav. Immun. 24, 387–393 (2010).
Hellstrom Erkenstam, N. et al. Temporal characterization of microglia/macrophage phenotypes in a mouse model of neonatal hypoxic-ischemic brain injury. Front. Cell. Neurosci. 10, 286 (2016).
pubmed: 28018179
pmcid: 5156678
Faustino, J. V. et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J. Neurosci. 31, 12992–13001 (2011).
pubmed: 21900578
pmcid: 3539822
Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).
pubmed: 21042938
pmcid: 2989000
Back, S. A. Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment. Retard. Dev. Disabil. Res. Rev. 12, 129–140 (2006).
pubmed: 16807910
Volpe, J. J. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr. Res. 50, 553–562 (2001).
pubmed: 11641446
Doyle, L. W. & Anderson, P. J. Adult outcome of extremely preterm infants. Pediatrics 126, 342–351 (2010).
pubmed: 20679313
Monson, B. B. et al. Examination of the pattern of growth of cerebral tissue volumes from hospital discharge to early childhood in very preterm infants. JAMA Pediatr. 170, 772–779 (2016).
pubmed: 27368090
Thompson, D. K. et al. Neonate hippocampal volumes: prematurity, perinatal predictors, and 2-year outcome. Ann. Neurol. 63, 642–651 (2008).
pubmed: 18384167
Woodward, L. J., Anderson, P. J., Austin, N. C., Howard, K. & Inder, T. E. Neonatal MRI to predict neurodevelopmental outcomes in preterm infants. N. Engl. J. Med. 355, 685–694 (2006).
pubmed: 16914704
Back, S. A. & Rosenberg, P. A. Pathophysiology of glia in perinatal white matter injury. Glia 62, 1790–1815 (2014).
pubmed: 24687630
pmcid: 4163108
Tolcos, M. et al. Blocked, delayed, or obstructed: what causes poor white matter development in intrauterine growth restricted infants? Prog. Neurobiol. 154, 62–77 (2017).
pubmed: 28392287
Balevich, E. C. et al. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia. Psychiatry Res. 231, 244–251 (2015).
pubmed: 25637358
pmcid: 4363270
Kochunov, P. et al. Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol. Psychiatry 73, 482–491 (2013).
pubmed: 23200529
Kubicki, M. et al. DTI and MTR abnormalities in schizophrenia: analysis of white matter integrity. Neuroimage 26, 1109–1118 (2005).
pubmed: 15878290
pmcid: 2768051
Baud, O. et al. Developmental up-regulation of MnSOD in rat oligodendrocytes confers protection against oxidative injury. Eur. J. Neurosci. 20, 29–40 (2004).
pubmed: 15245476
Baud, O. et al. Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur. J. Neurosci. 20, 1713–1726 (2004).
pubmed: 15379992
Poggi, G. et al. Cortical network dysfunction caused by a subtle defect of myelination. Glia 64, 2025–2040 (2016).
pubmed: 27470661
pmcid: 5129527
Janova, H. et al. Microglia ablation alleviates myelin-associated catatonic signs in mice. J. Clin. Invest. 128, 734–745 (2018).
pubmed: 29252214
Bale, T. L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 16, 332–344 (2015).
pubmed: 25921815
Hoffmann, A., Zimmermann, C. A. & Spengler, D. Molecular epigenetic switches in neurodevelopment in health and disease. Front. Behav. Neurosci. 9, 120 (2015).
pubmed: 26029068
pmcid: 4429584
Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).
pubmed: 23828890
pmcid: 3785061
Yan, Z., Jiao, F., Yan, X. & Ou, H. Maternal chronic folate supplementation ameliorates behavior disorders induced by prenatal high-fat diet through methylation alteration of BDNF and Grin2b in offspring hippocampus. Mol. Nutr. Food Res. https://doi.org/10.1002/mnfr.201700461 (2017).
Bahi, A. Hippocampal BDNF overexpression or microR124a silencing reduces anxiety- and autism-like behaviors in rats. Behav. Brain Res. 326, 281–290 (2017).
pubmed: 28284951
Pusalkar, M. et al. Early stress evokes dysregulation of histone modifiers in the medial prefrontal cortex across the life span. Dev. Psychobiol. 58, 198–210 (2016).
pubmed: 26395029
Dugas, J. C. et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65, 597–611 (2010).
pubmed: 20223197
pmcid: 2843397
Zhao, X. et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65, 612–626 (2010).
pubmed: 20223198
pmcid: 2855245
Khundrakpam, B. S., Lewis, J. D., Kostopoulos, P., Carbonell, F. & Evans, A. C. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: a large-scale MRI study. Cereb. Cortex 27, 1721–1731 (2017).
pubmed: 28334080
Towfighi, J., Yager, J. Y., Housman, C. & Vannucci, R. C. Neuropathology of remote hypoxic-ischemic damage in the immature rat. Acta Neuropathol. 81, 578–587 (1991).
pubmed: 1858486
Felderhoff-Mueser U, Bittigau P, Sifringer M, Jarosz B, Korobowicz E, Mahler L, Piening T, Moysich A, Grune T, Thor F, Heumann R, Buhrer C, Ikonomidou C: Oxygen causes cell death in the developing brain. Neurobiol Dis. 17, 273-282 (2004).
Spencer, S. J. & Meyer, U. Perinatal programming by inflammation. Brain Behav. Immun. 63, 1–7 (2017).
pubmed: 28196717
Zorrilla, E. P. Multiparous species present problems (and possibilities) to developmentalists. Dev. Psychobiol. 30, 141–150 (1997).
pubmed: 9068968
Crawley, J. N. & Paylor, R. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm. Behav. 31, 197–211 (1997).
pubmed: 9213134
Fisch, G. S. Animal models and human neuropsychiatric disorders. Behav. Genet. 37, 1–10 (2007).
pubmed: 17047896
Bubser, M. & Koch, M. Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology (Berl.) 113, 487–492 (1994).
Sams-Dodd, F., Lipska, B. K. & Weinberger, D. R. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl.) 132, 303–310 (1997).
Griebel, G. & Holmes, A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat. Rev. Drug Discov. 12, 667–687 (2013).
pubmed: 23989795
pmcid: 4176700
Freudenberg, F., O’Leary, A., Aguiar, D. C. & Slattery, D. A. Challenges with modelling anxiety disorders: a possible hindrance for drug discovery. Expert Opin. Drug Discov. 13, 279–281 (2018).
pubmed: 29240521
Crawley, J. N. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835, 18–26 (1999).
pubmed: 10448192
Enkel, T., Thomas, M. & Bartsch, D. Differential effects of subchronic phencyclidine on anxiety in the light-enhanced startle-, light/dark exploration- and open field tests. Behav. Brain Res. 243, 61–65 (2013).
pubmed: 23299039
Gray, J. A. Emotionality in male and female rodents: a reply to Archer. Br. J. Psychol. 70, 425–440 (1979).
pubmed: 486879
Pellow, S., Chopin, P., File, S. E. & Briley, M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167 (1985).
pubmed: 2864480
Blackburn, T. P. et al. BRL 46470A: a highly potent, selective and long acting 5-HT3 receptor antagonist with anxiolytic-like properties. Psychopharmacology (Berl.) 110, 257–264 (1993).
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).
pubmed: 18073775
pmcid: 2919277
Maes, M. et al. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 10, 66 (2012).
pubmed: 22747645
pmcid: 3391987
Steiner, M. A., Lecourt, H., Rakotoariniaina, A. & Jenck, F. Favoured genetic background for testing anxiolytics in the fear-potentiated and light-enhanced startle paradigms in the rat. Behav. Brain Res. 221, 34–42 (2011).
pubmed: 21354212
Dantzer, R. Cytokine-induced sickness behavior: mechanisms and implications. Ann. NY Acad. Sci. 933, 222–234 (2001).
pubmed: 12000023
Dantzer, R. Cytokine-induced sickness behavior: where do we stand? Brain Behav. Immun. 15, 7–24 (2001).
pubmed: 11259077
Hart, B. L. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).
pubmed: 3050629
McCormick, C. M., Smith, C. & Mathews, I. Z. Effects of chronic social stress in adolescence on anxiety and neuroendocrine response to mild stress in male and female rats. Behav. Brain Res. 187, 228–238 (2008).
pubmed: 17945360
DeFries, J. C., Hegmann, J. P. & Weir, M. W. Open-field behavior in mice: evidence for a major gene effect mediated by the visual system. Science 154, 1577–1579 (1966).
pubmed: 5924928
Acevedo, M. B., Nizhnikov, M. E., Molina, J. C. & Pautassi, R. M. Relationship between ethanol-induced activity and anxiolysis in the open field, elevated plus maze, light-dark box, and ethanol intake in adolescent rats. Behav. Brain Res. 265, 203–215 (2014).
pubmed: 24583190
pmcid: 4010194
Crawley, J. & Goodwin, F. K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 13, 167–170 (1980).
pubmed: 6106204
Bailey, K. R. & Crawley, J. N. in Methods of Behavior Analysis in Neuroscience 2nd edn (ed. Buccafusco J. J.) Ch. 5 (CRC Press/Taylor & Francis: Boca Raton (FL), 2009).
Bourin, M. & Hascoet, M. The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65 (2003).
pubmed: 12600702
Ramos, A. Animal models of anxiety: do I need multiple tests? Trends Pharmacol. Sci. 29, 493–498 (2008).
pubmed: 18755516
Freudenberg, F., O’Leary, A., Aguiar, D. C. & Slattery, D. A. Challenges with modelling anxiety disorders: a possible hindrance for drug discovery. Expert Opin. Drug Discov. 13, 279–281 (2017).
Braff, D. L. et al. Impact of prepulse characteristics on the detection of sensorimotor gating deficits in schizophrenia. Schizophr. Res. 49, 171–178 (2001).
pubmed: 11343875
Koch, M. The neurobiology of startle. Prog. Neurobiol. 59, 107–128 (1999).
pubmed: 10463792
Landis, C. & Hunt, W. The Startle Pattern (Farrar & Rinehart, Oxford, 1939).
Blumenthal, T. D. et al. Prepulse effects on magnitude estimation of startle-eliciting stimuli and startle responses. Percept. Psychophys. 58, 73–80 (1996).
pubmed: 8668522
Braff, D. L., Geyer, M. A. & Swerdlow, N. R. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl.) 156, 234–258 (2001).
Swerdlow, N. R., Geyer, M. A. & Braff, D. L. Neural circuit regulation of prepulse inhibition of startle in the rat: current knowledge and future challenges. Psychopharmacology (Berl.) 156, 194–215 (2001).
Swerdlow, N. R. et al. Toward understanding the biology of a complex phenotype: rat strain and substrain differences in the sensorimotor gating-disruptive effects of dopamine agonists. J. Neurosci. 20, 4325–4336 (2000).
pubmed: 10818168
Hoffman, H. S. & Ison, J. R. Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol. Rev. 87, 175–189 (1980).
pubmed: 7375610
Geyer, M. A. & Swerdlow, N. R. Measurement of startle response, prepulse inhibition, and habituation. Curr. Protoc. Neurosci. Chapter 8, Unit 8.7 (2001).
Swerdlow, N. R., Braff, D. L., Taaid, N. & Geyer, M. A. Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch. Gen. Psychiatry 51, 139–154 (1994).
pubmed: 8297213
Wolf, R. et al. Reduction of prepulse inhibition (PPI) after neonatal excitotoxic lesion of the ventral thalamus in pubertal and adult rats. Pharmacopsychiatry 43, 99–109 (2010).
pubmed: 20131206
Schmadel, S., Schwabe, K. & Koch, M. Effects of neonatal excitotoxic lesions of the entorhinal cortex on cognitive functions in the adult rat. Neuroscience 128, 365–374 (2004).
pubmed: 15350648
Reilly, S. Reinforcement value of gustatory stimuli determined by progressive ratio performance. Pharmacol. Biochem. Behav. 63, 301–311 (1999).
pubmed: 10371660
Schneider, M. & Koch, M. Chronic pubertal, but not adult chronic cannabinoid treatment impairs sensorimotor gating, recognition memory, and the performance in a progressive ratio task in adult rats. Neuropsychopharmacology 28, 1760–1769 (2003).
Mobini, S., Chiang, T. J., Ho, M. Y., Bradshaw, C. M. & Szabadi, E. Comparison of the effects of clozapine, haloperidol, chlorpromazine and D-amphetamine on performance on a time-constrained progressive ratio schedule and on locomotor behaviour in the rat. Psychopharmacology (Berl.) 152, 47–54 (2000).
Ellenbroek, B. A. & Cools, A. R. Animal models for the negative symptoms of schizophrenia. Behav. Pharmacol. 11, 223–233 (2000).
pubmed: 11103877
Rylander, G. Psychoses and the punding and choreiform syndromes in addiction to central stimulant drugs. Psychiatr. Neurol. Neurochir. 75, 203–212 (1972).
pubmed: 4625014
Schiorring, E. in Cocaine and Other Stimulants (eds Ellinwood, E. H. J. & Kilbey, M. J.) 481–522 (Raven, New York, 1977).
Ridley, R. M. The psychology of perserverative and stereotyped behaviour. Prog. Neurobiol. 44, 221–231 (1994).
pubmed: 7831478
Randrup, A. & Munkvad, I. Influence of amphetamines on animal behaviour: stereotypy, functional impairment and possible animal-human correlations. Psychiatr. Neurol. Neurochir. 75, 193–202 (1972).
pubmed: 4625013
Canales, J. J. & Graybiel, A. M. A measure of striatal function predicts motor stereotypy. Nat. Neurosci. 3, 377–383 (2000).
pubmed: 10725928
Hadamitzky, M., McCunney, S., Markou, A. & Kuczenski, R. Development of stereotyped behaviors during prolonged escalation of methamphetamine self-administration in rats. Psychopharmacology (Berl.) 223, 259–269 (2012).
Segal, D. S. & Kuczenski, R. Individual differences in responsiveness to single and repeated amphetamine administration: behavioral characteristics and neurochemical correlates. J. Pharmacol. Exp. Ther. 242, 917–926 (1987).
pubmed: 3656119
Grassi-Oliveira, R., Honeycutt, J. A., Holland, F. H., Ganguly, P. & Brenhouse, H. C. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: impacts of sex, experience, and cytokines. Psychoneuroendocrinology 71, 19–30 (2016).
pubmed: 27235636
pmcid: 5412140
Morris, R. G. M. Spiral localization does not require the presence of local cues. Learn. Motiv. 12, 239–260 (1981).
Bolding, K. & Rudy, J. W. Place learning in the Morris water task: making the memory stick. Learn. Mem. 13, 278–286 (2006).
pubmed: 16705134
pmcid: 1475808
Wenk, G. L. Assessment of spatial memory using the T maze. Curr. Protoc. Neurosci. Chapter 8, Unit 8.5B (2001).
Barnes, C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104 (1979).
pubmed: 221551
O’Leary, T. P., Savoie, V. & Brown, R. E. Learning, memory and search strategies of inbred mouse strains with different visual abilities in the Barnes maze. Behav. Brain Res. 216, 531–542 (2011).
pubmed: 20801160
Nozari, M., Mansouri, F. A., Shabani, M., Nozari, H. & Atapour, N. Postnatal MK-801 treatment of female rats impairs acquisition of working memory, but not reference memory in an eight-arm radial maze; no beneficial effects of enriched environment. Psychopharmacology (Berl.) 232, 2541–2550 (2015).
Avdesh, A., Hoe, Y., Martins, R. N. & Martin-Iverson, M. T. Pharmacological effects of cannabinoids on the reference and working memory functions in mice. Psychopharmacology (Berl.) 225, 483–494 (2013).
Steckler, T., Sahgal, A., Aggleton, J. P. & Drinkenburg, W. H. Recognition memory in rats--III. Neurochemical substrates. Prog. Neurobiol. 54, 333–348 (1998).
pubmed: 9481802
Steckler, T., Drinkenburg, W. H., Sahgal, A. & Aggleton, J. P. Recognition memory in rats--II. Neuroanatomical substrates. Prog. Neurobiol. 54, 313–332 (1998).
pubmed: 9481801
Steckler, T., Drinkenburg, W. H., Sahgal, A. & Aggleton, J. P. Recognition memory in rats--I. Concepts and classification. Prog. Neurobiol. 54, 289–311 (1998).
pubmed: 9481800
Chambon, C., Wegener, N., Gravius, A. & Danysz, W. A new automated method to assess the rat recognition memory: validation of the method. Behav. Brain Res. 222, 151–157 (2011).
pubmed: 21421012
Eslinger, P. J., Flaherty-Craig, C. V. & Benton, A. L. Developmental outcomes after early prefrontal cortex damage. Brain Cogn. 55, 84–103 (2004).
pubmed: 15134845
Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat. Neurosci. 2, 1032–1037 (1999).
pubmed: 10526345
Grossman, J. B., Carter, A. & Volkmar, F. R. Social behavior in autism. Ann. NY Acad. Sci. 807, 440–454 (1997).
pubmed: 9071369
Schneider, M. & Koch, M. Deficient social and play behavior in juvenile and adult rats after neonatal cortical lesion: effects of chronic pubertal cannabinoid treatment. Neuropsychopharmacology 30, 944–957 (2005).
pubmed: 15592349
Calzavara, M. B. et al. The contextual fear conditioning deficit presented by spontaneously hypertensive rats (SHR) is not improved by mood stabilizers. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1607–1611 (2011).
pubmed: 21708209
Long, L. E. et al. A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice. Int. J. Neuropsychopharmacol. 13, 861–876 (2010).
pubmed: 19785914
Long, L. E. et al. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice. PLoS ONE 7, e34129 (2012).
pubmed: 22509273
pmcid: 3317922
Almeida, V. et al. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog. Neuropsychopharmacol. Biol. Psychiatry 41, 30–35 (2013).
pubmed: 23127569
O’Tuathaigh, C. M. et al. Schizophrenia-related endophenotypes in heterozygous neuregulin-1 ‘knockout’ mice. Eur. J. Neurosci. 31, 349–358 (2010).
pubmed: 20074216
Sams-Dodd, F. Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav. Pharmacol. 6, 55–65 (1995).
pubmed: 11224312
Sams-Dodd, F. Effects of continuous D-amphetamine and phencyclidine administration on social behaviour, stereotyped behaviour, and locomotor activity in rats. Neuropsychopharmacology 19, 18–25 (1998).
pubmed: 9608573
Sams-Dodd, F. Effects of dopamine agonists and antagonists on PCP-induced stereotyped behaviour and social isolation in the rat social interaction test. Psychopharmacology (Berl.) 135, 182–193 (1998).
Felix-Ortiz, A. C. & Tye, K. M. Amygdala inputs to the ventral hippocampus bidirectionally modulate social behavior. J. Neurosci. 34, 586–595 (2014).
pubmed: 24403157
pmcid: 3870937
Yang, M., Silverman, J. L. & Crawley, J. N. Automated three-chambered social approach task for mice. Curr. Protoc. Neurosci. Chapter 8, Unit 8.26 (2011).
Chao, O. Y., Yunger, R. & Yang, Y. M. Behavioral assessments of BTBR T+Itpr3tf/J mice by tests of object attention and elevated open platform: implications for an animal model of psychiatric comorbidity in autism. Behav. Brain Res. 347, 140–147 (2018).
pubmed: 29545145
Manfre, G. et al. BACHD rats expressing full-length mutant huntingtin exhibit differences in social behavior compared to wild-type littermates. PLoS ONE 13, e0192289 (2018).
pubmed: 29415038
pmcid: 5802907
Bizot, J. C. & Thiebot, M. H. Impulsivity as a confounding factor in certain animal tests of cognitive function. Brain Res. Cogn. Brain Res. 3, 243–250 (1996).
pubmed: 8806026
Talpos, J. C., Wilkinson, L. S. & Robbins, T. W. A comparison of multiple 5-HT receptors in two tasks measuring impulsivity. J. Psychopharmacol. 20, 47–58 (2006).
pubmed: 16204332
Evenden, J. Impulsivity: a discussion of clinical and experimental findings. J. Psychopharmacol. 13, 180–192 (1999).
pubmed: 10475725
Evenden, J. The pharmacology of impulsive behaviour in rats V: the effects of drugs on responding under a discrimination task using unreliable visual stimuli. Psychopharmacology (Berl.) 143, 111–122 (1999).
Poulos, C. X., Parker, J. L. & Le, D. A. Increased impulsivity after injected alcohol predicts later alcohol consumption in rats: evidence for “loss-of-control drinking” and marked individual differences. Behav. Neurosci. 112, 1247–1257 (1998).
pubmed: 9829802
Winstanley, C. A., Eagle, D. M. & Robbins, T. W. Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin. Psychol. Rev. 26, 379–395 (2006).
pubmed: 16504359
pmcid: 1892795
Winstanley, C. A., Theobald, D. E., Dalley, J. W., Glennon, J. C. & Robbins, T. W. 5-HT2A and 5-HT2C receptor antagonists have opposing effects on a measure of impulsivity: interactions with global 5-HT depletion. Psychopharmacology (Berl.) 176, 376–385 (2004).
Winstanley, C. A. The orbitofrontal cortex, impulsivity, and addiction: probing orbitofrontal dysfunction at the neural, neurochemical, and molecular level. Ann. NY Acad. Sci. 1121, 639–655 (2007).
pubmed: 17846162
Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M. & Swann, A. C. Psychiatric aspects of impulsivity. Am. J. Psychiatry 158, 1783–1793 (2001).
pubmed: 11691682
Swann, A. C., Bjork, J. M., Moeller, F. G. & Dougherty, D. M. Two models of impulsivity: relationship to personality traits and psychopathology. Biol. Psychiatry 51, 988–994 (2002).
pubmed: 12062883
Nigg, J. T. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol. Bull. 126, 220–246 (2000).
pubmed: 10748641
Riccio, C. A., Waldrop, J. J., Reynolds, C. R. & Lowe, P. Effects of stimulants on the continuous performance test (CPT): implications for CPT use and interpretation. J. Neuropsychiatry Clin. Neurosci. 13, 326–335 (2001).
pubmed: 11514638
Day, M. et al. Differential effects of ciproxifan and nicotine on impulsivity and attention measures in the 5-choice serial reaction time test. Biochem. Pharmacol. 73, 1123–1134 (2007).
pubmed: 17214974
Robbins, T. W. The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl.) 163, 362–380 (2002).
Koskinen, T., Ruotsalainen, S. & Sirvio, J. The 5-HT(2) receptor activation enhances impulsive responding without increasing motor activity in rats. Pharmacol. Biochem. Behav. 66, 729–738 (2000).
pubmed: 10973510
Evenden, J. L. The pharmacology of impulsive behaviour in rats III: the effects of amphetamine, haloperidol, imipramine, chlordiazepoxide and ethanol on a paced fixed consecutive number schedule. Psychopharmacology (Berl.) 138, 295–304 (1998).
Evenden, J. L. & Ryan, C. N. The pharmacology of impulsive behaviour in rats VI: the effects of ethanol and selective serotonergic drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl.) 146, 413–421 (1999).
Bizot, J., Le Bihan, C., Puech, A. J., Hamon, M. & Thiebot, M. Serotonin and tolerance to delay of reward in rats. Psychopharmacology (Berl.) 146, 400–412 (1999).
Soubrié, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 9, 319–335 (1986).
Bizot, J. C. et al. Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl.) 193, 215–223 (2007).
Evenden, J. L. & Ryan, C. N. The pharmacology of impulsive behaviour in rats: the effects of drugs on response choice with varying delays of reinforcement. Psychopharmacology (Berl.) 128, 161–170 (1996).