Neuronal extracellular microRNAs miR-124 and miR-9 mediate cell-cell communication between neurons and microglia.


Journal

Journal of neuroscience research
ISSN: 1097-4547
Titre abrégé: J Neurosci Res
Pays: United States
ID NLM: 7600111

Informations de publication

Date de publication:
02 2019
Historique:
received: 14 06 2018
revised: 27 09 2018
accepted: 28 09 2018
pubmed: 28 10 2018
medline: 2 7 2020
entrez: 28 10 2018
Statut: ppublish

Résumé

In contrast to peripheral macrophages, microglia in the central nervous system (CNS) exhibit a specific deactivated phenotype; however, it is not clear how this phenotype is maintained. Two alternative hypotheses were postulated recently: (a) microglia differ from peripheral macrophages being derived from the yolk sac (YS), whereas peripheral macrophages originate from bone marrow (BM); (b) microglia acquire a specific phenotype under the influence of the CNS microenvironment. We have previously shown that microglia express miR-124, which was also induced in BM-derived macrophages co-cultured with a neurons. We here investigated the possibility of horizontal transfer of the neuron-specific microRNAs miR-124 and miR-9 from primary neurons to microglia/macrophages. We found that after incubation with neuronal conditioned media (NCM), macrophages downregulated activation markers MHC class II and CD45. Neither cultured adult microglia nor YS- and BM-derived macrophages demonstrated intrinsic levels of miR-124 expression. However, after incubation with NCM, miR-124 was induced in both YS- and BM-derived macrophages. Biochemical analysis demonstrated that the NCM contained miR-124 and miR-9 in complex with small proteins, large high-density lipoproteins (HDLs), and exosomes. MiR-124 and miR-9 were promptly released from neurons, and this process was inhibited by tetrodotoxin, indicating an important role of neuronal electric activity in secretion of these microRNAs. Incubation of macrophages with exogenous miR-124 resulted in efficient translocation of miR-124 into the cytoplasm. This study demonstrates an important role of neuronal miRNAs in communication of neurons with microglia, which favors the hypothesis that microglia acquire a specific phenotype under the influence of the CNS microenvironment.

Identifiants

pubmed: 30367726
doi: 10.1002/jnr.24344
pmc: PMC6587827
doi:

Substances chimiques

Lipoproteins 0
MIRN9 microRNA, mouse 0
MicroRNAs 0
Mirn124 microRNA, mouse 0
Leukocyte Common Antigens EC 3.1.3.48

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

162-184

Informations de copyright

© 2018 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

Références

J Neurosci. 2002 Mar 15;22(6):2215-24
pubmed: 11896161
J Vis Exp. 2012 Jul 23;(65):
pubmed: 22872097
J Neurosci. 2007 Oct 3;27(40):10714-21
pubmed: 17913905
Neuroscience. 2009 Aug 18;162(2):254-67
pubmed: 19447163
Nat Med. 2011 Jan;17(1):64-70
pubmed: 21131957
J Biol Chem. 2010 Jun 4;285(23):17442-52
pubmed: 20353945
Glia. 2013 Jan;61(1):91-103
pubmed: 22653784
J Immunol Methods. 2005 May;300(1-2):32-46
pubmed: 15893321
Am J Pathol. 2001 Mar;158(3):825-32
pubmed: 11238031
Front Physiol. 2012 May 28;3:145
pubmed: 22654762
J Biol Chem. 2012 Feb 17;287(8):5267-77
pubmed: 22174421
J Neuropathol Exp Neurol. 2016 Feb;75(2):156-66
pubmed: 26802178
PLoS One. 2014 May 02;9(5):e96256
pubmed: 24788965
Immunity. 2017 Jun 20;46(6):1030-1044.e8
pubmed: 28636953
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5282-7
pubmed: 19289835
Neuroscience. 2005;131(1):43-54
pubmed: 15680690
Immunity. 2017 Sep 19;47(3):498-509.e6
pubmed: 28916264
PLoS One. 2013 Dec 16;8(12):e81774
pubmed: 24358127
Nat Cell Biol. 2011 Apr;13(4):423-33
pubmed: 21423178
Stem Cells. 2006 Apr;24(4):857-64
pubmed: 16357340
FEBS Lett. 2015 Jun 4;589(13):1391-8
pubmed: 25937124
J Neurosci Res. 2019 Feb;97(2):162-184
pubmed: 30367726
Biochim Biophys Acta Rev Cancer. 2017 Dec;1868(2):372-393
pubmed: 28669749
Cardiovasc Res. 2014 Aug 1;103(3):405-13
pubmed: 24907980
J Exp Neurosci. 2016 Oct 05;10:101-120
pubmed: 27721656
Arterioscler Thromb Vasc Biol. 2013 Feb;33(2):170-7
pubmed: 23325473
Front Immunol. 2018 Mar 02;9:406
pubmed: 29599771
Eur J Neurosci. 2005 Jan;21(2):422-30
pubmed: 15673441
Methods Mol Biol. 2018;1745:167-177
pubmed: 29476469
Mol Cell. 2012 Sep 14;47(5):746-54
pubmed: 22902558
J Neurosci Res. 2005 Aug 1;81(3):374-89
pubmed: 15959904
BMC Cell Biol. 2013 Apr 22;14:23
pubmed: 23607880
Front Synaptic Neurosci. 2014 Mar 20;6:5
pubmed: 24688467
BMC Res Notes. 2011 Nov 28;4:517
pubmed: 22123030
Front Cell Neurosci. 2013 Nov 20;7:220
pubmed: 24312010
Biochem Biophys Res Commun. 2013 Feb 15;431(3):610-6
pubmed: 23291181
Front Endocrinol (Lausanne). 2017 Dec 22;8:355
pubmed: 29312145
Genomics Proteomics Bioinformatics. 2015 Feb;13(1):17-24
pubmed: 25724326
Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10649-54
pubmed: 10485880
Immunol Lett. 2000 Oct 3;74(2):133-9
pubmed: 10996389
Methods Mol Biol. 2018;1745:155-166
pubmed: 29476468
Curr Opin Pharmacol. 2008 Aug;8(4):496-507
pubmed: 18691672
Nucleic Acids Res. 2006 Apr 26;34(7):2128-36
pubmed: 16641318
Nucleic Acids Res. 2010 Nov;38(20):7248-59
pubmed: 20615901
Biochim Biophys Acta. 2016 Dec;1861(12 Pt B):2069-2074
pubmed: 26825691
Front Immunol. 2018 Jan 25;9:50
pubmed: 29422898
Cell. 2004 Mar 19;116(6):779-93
pubmed: 15035981
Nat Protoc. 2010 Jun;5(6):1061-73
pubmed: 20539282
PLoS One. 2013;8(3):e58979
pubmed: 23555611
Hum Mol Genet. 2013 Aug 1;22(15):3077-92
pubmed: 23585551
Nat Commun. 2016 May 03;7:11499
pubmed: 27139776
Front Hum Neurosci. 2016 Nov 08;10:566
pubmed: 27877121
Nucleic Acids Res. 2011 Sep 1;39(16):7223-33
pubmed: 21609964
RNA. 2009 Mar;15(3):384-90
pubmed: 19155320

Auteurs

Tatyana Veremeyko (T)

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.

Inna S Kuznetsova (IS)

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.

Marina Dukhinova (M)

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.

Amanda W Y Yung (A)

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.

Ekaterina Kopeikina (E)

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.

Natasha S Barteneva (NS)

Program in Cellular and Molecular Medicine, Children's Hospital Boston and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
School of Science and Technology, Nazarbayev University, Astana, Kazakhstan.

Eugene D Ponomarev (ED)

School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.
Kunming Institute of Zoology, Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunmin, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH