Reducing aquatic micropollutants - Increasing the focus on input prevention and integrated emission management.

Micro pollutant Prevention Source Sustainable chemistry Sustainable development goal Treatment Water

Journal

The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500

Informations de publication

Date de publication:
20 Feb 2019
Historique:
received: 24 11 2016
revised: 15 10 2018
accepted: 15 10 2018
pubmed: 1 11 2018
medline: 1 11 2018
entrez: 1 11 2018
Statut: ppublish

Résumé

Pharmaceuticals and many other chemicals are an important basis for nearly all sectors including for example, food and agriculture, medicine, plastics, electronics, transport, communication, and many other products used nowadays. This comes along with a tremendous chemicalization of the globe, including ubiquitous presence of products of chemical and pharmaceutical industries in the aquatic environment. Use of these products will increase with population growth and living standard as will the need for clean water. In addition, climate change will exacerbate availability of water in sufficient quantity and quality. Since its implementation, conventional wastewater treatment has increasingly contributed to environmental protection and health of humans. However, with the increasing pollution of water by chemicals, conventional treatment turned out to be insufficient. It was also found that advanced effluent treatment methods such as extended filtration, the sorption to activated charcoal or advanced oxidation methods have their own limitations. These are, for example, increased demand for energy and hazardous chemicals, incomplete or even no removal of pollutants, the generation of unwanted products from parent compounds (transformation products, TPs) of often-unknown chemical structure, fate and toxicity. In many countries, effluent treatment is available only rarely if at all let alone advanced treatment. The past should teach us, that focusing only on technological approaches is not constructive for a sustainable water quality control. Therefore, in addition to conventional and advanced treatment optimization more emphasis on input prevention is urgently needed, including more and better control of what is present in the source water. Measures for input prevention are known for long. The main focus though has always been on the treatment, and measures taken at the source have gained only little attention so far. A more effective and efficient approach, however, would be to avoid pollution at the source, which would in turn allow more targeted treatment to meet treated water quality objectives globally. New developments within green and sustainable chemistry are offering new approaches that allow for input prevention and a more targeted treatment to succeed in pollution elimination in and at the source. To put this into practice, engineers, water scientists and chemists as well as microbiologists and scientists of other related disciplines need to cooperate more extensively than in the past. Applying principles such as the precautionary principle, or keeping water flows separate where possible will add to this. This implies not minimizing the efforts to improve wastewater treatment but to design effluents and chemicals in such a way that treatment systems and water environments can cope successfully with the challenge of micropollutants globally (Kümmerer et al., 2018). This paper therefore presents in its first part some of the limitations of effluent treatment in order to demonstrate the urgent need for minimizing water pollution at the source and, information on why source management is urgently needed to improve water quality and stimulate discussions how to protect water resources on a global level. Some principles of green and sustainable chemistry as well as other approaches, which are part of source management, are presented in the second part in order to stimulate discussion.

Identifiants

pubmed: 30380490
pii: S0048-9697(18)34112-3
doi: 10.1016/j.scitotenv.2018.10.219
pii:
doi:

Types de publication

Journal Article

Langues

eng

Pagination

836-850

Informations de copyright

Copyright © 2018 Elsevier B.V. All rights reserved.

Auteurs

Klaus Kümmerer (K)

Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; International Sustainable Chemistry Collaboration Center (ISC(3)), Research and Education, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany. Electronic address: Klaus.Kuemmerer@uni.leuphana.de.

Dionysios D Dionysiou (DD)

Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA; Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.

Oliver Olsson (O)

Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.

Despo Fatta-Kassinos (D)

Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus.

Classifications MeSH